This script is part of the Online Appendix to my PhD thesis.
Please cite as: Le Foll, Elen. 2022. Textbook English: A Corpus-Based Analysis of the Language of EFL textbooks used in Secondary Schools in France, Germany and Spain. PhD thesis. Osnabrück University.
For more information, see: https://elenlefoll.github.io/TextbookEnglish/
Please note that the plot dimensions in this notebook have been optimised for the print version of the thesis.
Built with R 4.0.3
# Colours used in Register Studies paper and included in Open Access plots published on Zenodo:
colours <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
scales::show_col(colours)
colours <- colours[6:1]
# Colour scheme used in PhD thesis:
colours = c("#F9B921", "#A18A33", "#722672", "#BD241E", "#15274D", "#D54E1E")
scales::show_col(colours)
# Textbook Corpus
TxBcounts <- read.delim(here("data", "TxB900MDA_counts.tsv"), header = TRUE)
glimpse(TxBcounts)
## Rows: 1,950
## Columns: 101
## $ Filename <chr> "._Access_1_Informative_0001.txt", "Access_1_Informative_000…
## $ Level <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", …
## $ Tokens <int> 89, 664, 718, 731, 768, 768, 773, 775, 765, 779, 827, 1042, …
## $ AWL <dbl> 1.5169, 4.2560, 4.0543, 4.2585, 3.9375, 3.9779, 4.0763, 3.90…
## $ TTR <dbl> 0.191011, 0.535000, 0.362500, 0.397500, 0.387500, 0.360000, …
## $ X. <dbl> 0.0000, 0.0000, 0.1393, 0.0000, 0.0000, 0.0000, 0.0000, 0.12…
## $ X..1 <dbl> 0.0000, 0.3012, 0.5571, 0.5472, 0.1302, 0.0000, 0.0000, 0.12…
## $ X.. <dbl> 0.0000, 0.4518, 0.1393, 0.1368, 0.2604, 0.2604, 0.0000, 0.25…
## $ X..2 <dbl> 0.0000, 5.2711, 2.5070, 1.5048, 0.5208, 1.5625, 1.5524, 1.03…
## $ X.LRB. <dbl> 0.0000, 0.3012, 0.9749, 0.9576, 1.1719, 0.1302, 0.7762, 1.80…
## $ X.RRB. <dbl> 0.0000, 0.3012, 4.0390, 6.7031, 5.9896, 4.6875, 5.1746, 5.16…
## $ . <dbl> 0.0000, 8.1325, 13.3705, 13.4063, 13.0208, 12.1094, 13.0660,…
## $ X..3 <dbl> 0.0000, 1.8072, 4.4568, 3.1464, 2.7344, 1.5625, 3.6223, 2.83…
## $ AMP <dbl> 0.0000, 0.9036, 0.0000, 0.0000, 0.0000, 0.0000, 0.1294, 0.00…
## $ ANDC <dbl> 0.0000, 0.1506, 0.2786, 0.0000, 0.1302, 0.2604, 0.1294, 0.12…
## $ CAUS <dbl> 0.0000, 0.1506, 0.0000, 0.0000, 0.0000, 0.0000, 0.1294, 0.00…
## $ CC <dbl> 0.0000, 1.6566, 2.3677, 1.9152, 2.6042, 2.3438, 2.1992, 1.93…
## $ CD <dbl> 4.4944, 0.9036, 0.9749, 1.6416, 0.9115, 1.3021, 1.0349, 1.29…
## $ CONC <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ COND <dbl> 0.0000, 0.0000, 0.1393, 0.1368, 0.1302, 0.0000, 0.0000, 0.00…
## $ CONJ <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ DEMO <dbl> 0.0000, 0.0000, 0.5571, 0.5472, 1.0417, 0.3906, 0.3881, 0.64…
## $ DEMP <dbl> 0.0000, 0.0000, 0.8357, 0.6840, 0.0000, 0.1302, 0.2587, 0.00…
## $ DPAR <dbl> 0.0000, 0.0000, 0.4178, 0.1368, 0.2604, 0.1302, 0.5175, 0.00…
## $ DT <dbl> 0.0000, 9.7892, 10.4457, 11.2175, 11.7188, 12.2396, 11.3842,…
## $ DWNT <dbl> 0.0000, 0.3012, 0.1393, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ EMPH <dbl> 0.0000, 0.1506, 0.5571, 0.5472, 0.2604, 0.2604, 0.0000, 0.25…
## $ EX <dbl> 0.0000, 0.1506, 0.0000, 0.4104, 0.0000, 0.0000, 0.0000, 0.00…
## $ FPP1 <dbl> 0.0000, 0.4518, 1.3928, 0.6840, 0.2604, 0.2604, 0.1294, 0.12…
## $ FW <dbl> 4.4944, 0.4518, 0.0000, 0.1368, 1.3021, 0.0000, 0.5175, 0.25…
## $ GER <dbl> 0.0000, 1.5060, 0.1393, 0.0000, 0.1302, 0.0000, 0.0000, 0.38…
## $ HDG <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.12…
## $ IN <dbl> 0.0000, 0.9036, 1.6713, 2.0520, 1.4323, 1.9531, 1.6818, 1.54…
## $ INPR <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ JJ <dbl> 0.0000, 5.1205, 5.1532, 3.1464, 3.1250, 1.9531, 2.5873, 5.03…
## $ LS <dbl> 0.0000, 0.0000, 2.3677, 4.1040, 3.3854, 3.5156, 3.6223, 2.70…
## $ NEMD <dbl> 0.0000, 0.1506, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ NN <dbl> 91.0112, 38.1024, 32.4513, 28.4542, 30.0781, 32.5521, 26.261…
## $ NNP <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ NOMZ <dbl> 0.0000, 0.4518, 0.8357, 2.3256, 0.2604, 1.3021, 3.6223, 0.77…
## $ OSUB <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ PDT <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ PHC <dbl> 0.0000, 1.0542, 1.2535, 1.2312, 1.3021, 0.9115, 1.0349, 1.16…
## $ PIN <dbl> 0.0000, 9.9398, 10.1671, 8.0711, 8.0729, 11.4583, 7.6326, 12…
## $ PIT <dbl> 0.0000, 1.5060, 0.5571, 0.4104, 0.7812, 0.5208, 0.9056, 1.03…
## $ PLACE <dbl> 0.0000, 1.6566, 0.1393, 0.1368, 0.2604, 0.0000, 0.1294, 0.12…
## $ POMD <dbl> 0.0000, 0.7530, 0.1393, 0.9576, 1.1719, 1.4323, 1.4230, 0.77…
## $ POS <dbl> 0.0000, 0.9036, 1.2535, 0.8208, 0.3906, 1.3021, 0.7762, 0.77…
## $ PRED <dbl> 0.0000, 0.9036, 0.2786, 0.1368, 0.7812, 0.1302, 0.2587, 0.12…
## $ PRMD <dbl> 0.0000, 0.0000, 0.0000, 0.1368, 0.0000, 0.2604, 0.0000, 0.00…
## $ PRP <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ PRPS <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ QUAN <dbl> 0.0000, 0.9036, 0.2786, 0.2736, 0.5208, 0.2604, 0.0000, 0.38…
## $ QUPR <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2604, 0.0000, 0.12…
## $ RB <dbl> 0.0000, 1.8072, 1.3928, 1.9152, 1.6927, 0.9115, 2.8461, 2.19…
## $ RP <dbl> 0.0000, 0.1506, 0.2786, 0.6840, 0.2604, 0.0000, 0.0000, 0.25…
## $ SPP2 <dbl> 0.0000, 0.6024, 3.8997, 6.8399, 5.4688, 6.7708, 6.7270, 4.51…
## $ SYM <dbl> 0.0000, 1.5060, 0.0000, 0.0000, 0.5208, 0.0000, 0.1294, 0.25…
## $ SYNE <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ THAC <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ THVC <dbl> 0.0000, 0.1506, 0.0000, 0.0000, 0.0000, 0.1302, 0.0000, 0.00…
## $ TIME <dbl> 0.0000, 0.3012, 0.4178, 0.5472, 0.1302, 0.2604, 0.1294, 0.12…
## $ TO <dbl> 0.0000, 1.0542, 0.1393, 0.0000, 0.5208, 0.2604, 1.0349, 0.64…
## $ TOBJ <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ TPP3 <dbl> 0.0000, 2.4096, 1.6713, 2.0520, 0.9115, 1.1719, 1.2937, 1.29…
## $ TSUB <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1302, 0.0000, 0.00…
## $ UH <dbl> 0.0000, 0.0000, 0.0000, 0.1368, 0.0000, 0.1302, 0.0000, 0.00…
## $ VB <dbl> 0.0000, 3.0120, 11.6992, 12.1751, 11.5885, 10.8073, 13.0660,…
## $ VBD <dbl> 0.0000, 3.1627, 0.2786, 0.0000, 0.0000, 0.0000, 0.0000, 0.64…
## $ VBG <dbl> 0.0000, 0.3012, 0.1393, 0.1368, 0.5208, 0.0000, 0.6468, 0.00…
## $ VBN <dbl> 0.0000, 0.3012, 0.0000, 0.0000, 0.1302, 0.0000, 0.0000, 0.38…
## $ VPRT <dbl> 0.0000, 6.3253, 4.1783, 4.6512, 5.3385, 3.5156, 4.9159, 3.48…
## $ WDT <dbl> 0.0000, 0.0000, 0.2786, 0.1368, 0.5208, 0.3906, 1.0349, 0.25…
## $ WP <dbl> 0.0000, 0.3012, 1.2535, 1.2312, 1.4323, 1.5625, 1.6818, 1.80…
## $ WPS <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ XX0 <dbl> 0.0000, 0.6024, 0.8357, 0.0000, 1.0417, 0.1302, 0.5175, 0.12…
## $ X.BEMA. <dbl> 0.0000, 2.8614, 1.3928, 1.3680, 1.3021, 1.1719, 1.2937, 1.16…
## $ X.BYPA. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.CONT. <dbl> 0.0000, 0.6024, 1.3928, 0.6840, 1.9531, 0.5208, 1.0349, 0.12…
## $ X.PASS. <dbl> 0.0000, 0.3012, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ X.PASTP. <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ X.PEAS. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.PIRE. <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1294, 0.00…
## $ X.PRESP. <dbl> 0.0000, 0.1506, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ X.PRIV. <dbl> 0.0000, 1.2048, 1.6713, 2.3256, 2.0833, 2.3438, 2.1992, 2.58…
## $ X.PROD. <dbl> 0.0000, 0.3012, 0.0000, 0.0000, 0.2604, 0.1302, 0.5175, 0.77…
## $ X.PUBV. <dbl> 0.0000, 0.1506, 2.2284, 3.1464, 1.9531, 1.4323, 1.9405, 1.67…
## $ X.SERE. <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.1294, 0.00…
## $ X.SMP. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.SPAU. <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ X.SPIN. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.STPR. <dbl> 0.0000, 0.4518, 0.1393, 0.0000, 0.0000, 0.2604, 0.2587, 0.00…
## $ X.SUAV. <dbl> 0.0000, 0.0000, 0.2786, 0.8208, 0.1302, 0.2604, 1.0349, 0.25…
## $ X.THATD. <dbl> 0.0000, 0.0000, 0.0000, 0.1368, 0.1302, 0.2604, 0.0000, 0.00…
## $ X.WHCL. <dbl> 0.0000, 0.1506, 0.2786, 0.2736, 0.5208, 0.1302, 0.6468, 0.38…
## $ X.WHOBJ. <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00…
## $ X.WHQU. <dbl> 0.0000, 0.0000, 0.0000, 0.2736, 0.3906, 0.3906, 0.0000, 0.00…
## $ X.WHSUB. <dbl> 0.0000, 0.0000, 0.1393, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ X.WZPAST. <dbl> 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.00…
## $ X.WZPRES. <dbl> 0.0000, 0.1506, 0.0000, 0.1368, 0.1302, 0.0000, 0.2587, 0.00…
## $ X...1 <dbl> 0.0000, 0.6024, 0.0000, 0.2736, 0.2604, 0.2604, 0.0000, 0.25…
nrow(TxBcounts)
## [1] 1950
TxBcounts <- TxBcounts %>% filter(Filename!="._Access_1_Informative_0001.txt")
TxBcounts$Register <- as.factor(stringr::str_extract(TxBcounts$Filename, "Spoken|Narrative|Other|Personal|Informative|Instructional|Poetry")) # Add a variable for Textbook Register
summary(TxBcounts$Register)
## Informative Instructional Narrative Personal Poetry
## 363 647 285 88 37
## Spoken
## 529
TxBcounts$Register <-car::recode(TxBcounts$Register, "'Narrative' = 'Fiction'; 'Spoken' = 'Conversation'")
colnames(TxBcounts)
## [1] "Filename" "Level" "Tokens" "AWL" "TTR" "X."
## [7] "X..1" "X.." "X..2" "X.LRB." "X.RRB." "."
## [13] "X..3" "AMP" "ANDC" "CAUS" "CC" "CD"
## [19] "CONC" "COND" "CONJ" "DEMO" "DEMP" "DPAR"
## [25] "DT" "DWNT" "EMPH" "EX" "FPP1" "FW"
## [31] "GER" "HDG" "IN" "INPR" "JJ" "LS"
## [37] "NEMD" "NN" "NNP" "NOMZ" "OSUB" "PDT"
## [43] "PHC" "PIN" "PIT" "PLACE" "POMD" "POS"
## [49] "PRED" "PRMD" "PRP" "PRPS" "QUAN" "QUPR"
## [55] "RB" "RP" "SPP2" "SYM" "SYNE" "THAC"
## [61] "THVC" "TIME" "TO" "TOBJ" "TPP3" "TSUB"
## [67] "UH" "VB" "VBD" "VBG" "VBN" "VPRT"
## [73] "WDT" "WP" "WPS" "XX0" "X.BEMA." "X.BYPA."
## [79] "X.CONT." "X.PASS." "X.PASTP." "X.PEAS." "X.PIRE." "X.PRESP."
## [85] "X.PRIV." "X.PROD." "X.PUBV." "X.SERE." "X.SMP." "X.SPAU."
## [91] "X.SPIN." "X.STPR." "X.SUAV." "X.THATD." "X.WHCL." "X.WHOBJ."
## [97] "X.WHQU." "X.WHSUB." "X.WZPAST." "X.WZPRES." "X...1" "Register"
MAT_features <- read.csv(here("metadata", "MAT_features_TxB.csv"), header = F)
MAT_features <- MAT_features$V3 # Feature names without any spaces or hythens
MAT_features
## [1] "Filename" "Level"
## [3] "Tokens" "AWL"
## [5] "TTR" "Hashtag"
## [7] "Dollar" "Quotation"
## [9] "Comma" "LeftBracket"
## [11] "RightBracket" "Full_stop"
## [13] "Colon" "Amplifiers"
## [15] "Ind_clause_coord" "because"
## [17] "Coord_conj" "Card_numb"
## [19] "although_though" "if_unless"
## [21] "Conjuncts" "Demonstratives"
## [23] "Dem_pronouns" "Discourse_particles"
## [25] "Determiners" "Downtoners"
## [27] "Emphatics" "Existential_there"
## [29] "FPP1" "Foreign_words"
## [31] "Gerunds" "Hedges"
## [33] "Prep_subord_conj" "Ind_pronouns"
## [35] "Attr_Adj" "List_markers"
## [37] "Necessity_modals" "Nouns"
## [39] "Proper_nouns" "Nominalizations"
## [41] "Adv_sub" "Pre_determiners"
## [43] "Phrasal_coord" "Prepositions"
## [45] "it" "Place_adv"
## [47] "Poss_modals" "Poss_S"
## [49] "Pred_adj" "Pred_modals"
## [51] "Personal_pronouns" "Poss_pronouns"
## [53] "Quantifiers" "Quantifying_pronouns"
## [55] "Adverbs" "Particles"
## [57] "SPP2" "Symbols"
## [59] "Syn_negation" "That_adj_comp"
## [61] "That_verb_comp" "Time_adv"
## [63] "To_infinitives" "That_rel_clause_obj"
## [65] "TPP3" "That_rel_clause_subj"
## [67] "Interjection" "Verb_base_form"
## [69] "Past_tense" "Verb_ing_form"
## [71] "Verb_past_par" "Present_tense"
## [73] "WH_determiner" "WH_pronoun"
## [75] "Poss_WH_pronoun" "Analytic_negation"
## [77] "BE_main_verb" "By_passives"
## [79] "Contractions" "Agentless_passives"
## [81] "Past_participial_clauses" "Perfect_aspect"
## [83] "Pied_piping_relative_clauses" "Present_part_clauses"
## [85] "Private_verbs" "Pro_verb_DO"
## [87] "Public_verbs" "Sentence_relatives"
## [89] "seem_appear" "Split_auxiliaries"
## [91] "Split_infinitives" "Stranded_prepositions"
## [93] "Suasive_verbs" "That_deletion"
## [95] "WH_clauses" "WH_rel_clauses_obj"
## [97] "Direct_WH_questions" "WH_rel_clauses_subj"
## [99] "Past_part_WHIZ_del_rel" "Present_part_WHIZ_del_rel"
## [101] "Quotation2" "Register"
colnames(TxBcounts) <- MAT_features
colnames(TxBcounts)
## [1] "Filename" "Level"
## [3] "Tokens" "AWL"
## [5] "TTR" "Hashtag"
## [7] "Dollar" "Quotation"
## [9] "Comma" "LeftBracket"
## [11] "RightBracket" "Full_stop"
## [13] "Colon" "Amplifiers"
## [15] "Ind_clause_coord" "because"
## [17] "Coord_conj" "Card_numb"
## [19] "although_though" "if_unless"
## [21] "Conjuncts" "Demonstratives"
## [23] "Dem_pronouns" "Discourse_particles"
## [25] "Determiners" "Downtoners"
## [27] "Emphatics" "Existential_there"
## [29] "FPP1" "Foreign_words"
## [31] "Gerunds" "Hedges"
## [33] "Prep_subord_conj" "Ind_pronouns"
## [35] "Attr_Adj" "List_markers"
## [37] "Necessity_modals" "Nouns"
## [39] "Proper_nouns" "Nominalizations"
## [41] "Adv_sub" "Pre_determiners"
## [43] "Phrasal_coord" "Prepositions"
## [45] "it" "Place_adv"
## [47] "Poss_modals" "Poss_S"
## [49] "Pred_adj" "Pred_modals"
## [51] "Personal_pronouns" "Poss_pronouns"
## [53] "Quantifiers" "Quantifying_pronouns"
## [55] "Adverbs" "Particles"
## [57] "SPP2" "Symbols"
## [59] "Syn_negation" "That_adj_comp"
## [61] "That_verb_comp" "Time_adv"
## [63] "To_infinitives" "That_rel_clause_obj"
## [65] "TPP3" "That_rel_clause_subj"
## [67] "Interjection" "Verb_base_form"
## [69] "Past_tense" "Verb_ing_form"
## [71] "Verb_past_par" "Present_tense"
## [73] "WH_determiner" "WH_pronoun"
## [75] "Poss_WH_pronoun" "Analytic_negation"
## [77] "BE_main_verb" "By_passives"
## [79] "Contractions" "Agentless_passives"
## [81] "Past_participial_clauses" "Perfect_aspect"
## [83] "Pied_piping_relative_clauses" "Present_part_clauses"
## [85] "Private_verbs" "Pro_verb_DO"
## [87] "Public_verbs" "Sentence_relatives"
## [89] "seem_appear" "Split_auxiliaries"
## [91] "Split_infinitives" "Stranded_prepositions"
## [93] "Suasive_verbs" "That_deletion"
## [95] "WH_clauses" "WH_rel_clauses_obj"
## [97] "Direct_WH_questions" "WH_rel_clauses_subj"
## [99] "Past_part_WHIZ_del_rel" "Present_part_WHIZ_del_rel"
## [101] "Quotation2" "Register"
TxBcounts %>%
group_by(Register) %>%
summarise(totaltexts = n(), totalwords = sum(Tokens), meannouncount = mean(Nouns), sdnouncount = sd(Nouns), TTRmean = mean(TTR))
## # A tibble: 6 × 6
## Register totaltexts totalwords meannouncount sdnouncount TTRmean
## <fct> <int> <int> <dbl> <dbl> <dbl>
## 1 Conversation 529 407591 24.4 4.34 0.459
## 2 Fiction 285 205072 22.2 3.82 0.498
## 3 Informative 363 265224 27.9 4.80 0.542
## 4 Instructional 647 499324 26.6 2.87 0.443
## 5 Personal 88 58534 22.5 4.10 0.511
## 6 Poetry 37 22358 23.4 4.74 0.465
### Z-scores ###
TxBzscores <- read.delim(here("data", "TxB900MDA_zscores.tsv"), header = TRUE)
glimpse(TxBzscores)
## Rows: 1,951
## Columns: 71
## $ Filename <chr> "._Access_1_Informative_0001.txt", "Access_1_Informative_000…
## $ Level <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", …
## $ AMP <dbl> -1.0385, 2.4369, -1.0385, -1.0385, -1.0385, -1.0385, -0.5408…
## $ ANDC <dbl> -0.9375, -0.6238, -0.3571, -0.9375, -0.6663, -0.3950, -0.667…
## $ AWL <dbl> -7.4579, -0.6099, -1.1142, -0.6036, -1.4062, -1.3053, -1.059…
## $ CAUS <dbl> -0.6471, 0.2388, -0.6471, -0.6471, -0.6471, -0.6471, 0.1141,…
## $ CONC <dbl> -0.625, -0.625, -0.625, -0.625, -0.625, -0.625, -0.625, -0.6…
## $ COND <dbl> -1.1364, -1.1364, -0.5032, -0.5145, -0.5445, -1.1364, -1.136…
## $ CONJ <dbl> -0.7500, -0.7500, -0.7500, -0.7500, -0.7500, -0.7500, -0.750…
## $ DEMO <dbl> -2.3571, -2.3571, -1.0307, -1.0543, 0.1231, -1.4271, -1.4331…
## $ DEMP <dbl> -0.9583, -0.9583, 0.7827, 0.4667, -0.9583, -0.6871, -0.4194,…
## $ DPAR <dbl> -0.5217, -0.5217, 1.2948, 0.0730, 0.6104, 0.0443, 1.7283, -0…
## $ DWNT <dbl> -1.2500, 0.6325, -0.3794, -1.2500, -1.2500, -1.2500, -1.2500…
## $ EMPH <dbl> -1.5000, -1.1414, -0.1736, -0.1971, -0.8800, -0.8800, -1.500…
## $ EX <dbl> -1.2222, -0.3856, -1.2222, 1.0578, -1.2222, -1.2222, -1.2222…
## $ FPP1 <dbl> -1.0421, -0.8690, -0.5085, -0.7801, -0.9424, -0.9424, -0.992…
## $ GER <dbl> -1.8421, 2.1211, -1.4755, -1.8421, -1.4995, -1.8421, -1.8421…
## $ HDG <dbl> -0.4615, -0.4615, -0.4615, -0.4615, -0.4615, -0.4615, -0.461…
## $ INPR <dbl> -0.7000, -0.7000, -0.7000, -0.7000, -0.7000, -0.7000, -0.700…
## $ JJ <dbl> -3.2287, -0.5051, -0.4877, -1.5551, -1.5665, -2.1898, -1.852…
## $ NEMD <dbl> -1.0000, -0.2829, -1.0000, -1.0000, -1.0000, -1.0000, -1.000…
## $ NN <dbl> 20.4947, 5.6327, 4.0453, 2.9225, 3.3787, 4.0736, 2.3065, 2.9…
## $ NOMZ <dbl> -1.3819, -1.0682, -0.8016, 0.2331, -1.2011, -0.4777, 1.1335,…
## $ OSUB <dbl> -0.9091, -0.9091, -0.9091, -0.9091, -0.9091, -0.9091, -0.909…
## $ PHC <dbl> -1.2593, 2.6452, 3.3833, 3.3007, 3.5633, 2.1167, 2.5737, 3.0…
## $ PIN <dbl> -4.3504, -0.4371, -0.3476, -1.1728, -1.1721, 0.1607, -1.3454…
## $ PIT <dbl> -1.4507, 0.6704, -0.6661, -0.8727, -0.3504, -0.7172, -0.1752…
## $ PLACE <dbl> -0.9118, 3.9606, -0.5021, -0.5094, -0.1459, -0.9118, -0.5312…
## $ POMD <dbl> -1.6571, 0.4943, -1.2591, 1.0789, 1.6911, 2.4351, 2.4086, 0.…
## $ PRED <dbl> -1.8077, 1.6677, -0.7362, -1.2815, 1.1969, -1.3069, -0.8127,…
## $ PRMD <dbl> -1.3333, -1.3333, -1.3333, -1.0076, -1.3333, -0.7133, -1.333…
## $ RB <dbl> -3.7273, -2.7005, -2.9359, -2.6391, -2.7655, -3.2094, -2.110…
## $ SPP2 <dbl> -0.7174, -0.2809, 2.1085, 4.2391, 3.2455, 4.1890, 4.1572, 2.…
## $ SYNE <dbl> -1.0625, -1.0625, -1.0625, -1.0625, -1.0625, -1.0625, -1.062…
## $ THAC <dbl> -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, …
## $ THVC <dbl> -1.1379, -0.6186, -1.1379, -1.1379, -1.1379, -0.6890, -1.137…
## $ TIME <dbl> -1.4857, -0.6251, -0.2920, 0.0777, -1.1137, -0.7417, -1.1160…
## $ TO <dbl> -2.6607, -0.7782, -2.4120, -2.6607, -1.7307, -2.1957, -0.812…
## $ TOBJ <dbl> -0.7273, -0.7273, -0.7273, -0.7273, -0.7273, -0.7273, -0.727…
## $ TPP3 <dbl> -1.3289, -0.2580, -0.5861, -0.4169, -0.9238, -0.8080, -0.753…
## $ TSUB <dbl> -0.5000, -0.5000, -0.5000, -0.5000, -0.5000, 1.1275, -0.5000…
## $ TTR <dbl> -6.1536, 0.4615, -2.8558, -2.1827, -2.3750, -2.9038, -1.7500…
## $ VBD <dbl> -1.3191, -0.2787, -1.2274, -1.3191, -1.3191, -1.3191, -1.319…
## $ VPRT <dbl> -2.2653, -0.4212, -1.0471, -0.9093, -0.7089, -1.2403, -0.832…
## $ XX0 <dbl> -1.3934, -0.4059, -0.0234, -1.3934, 0.3143, -1.1800, -0.5451…
## $ X.BEMA. <dbl> -2.9789, 0.0331, -1.5128, -1.5389, -1.6083, -1.7454, -1.6172…
## $ X.BYPA. <dbl> -0.6154, -0.6154, -0.6154, -0.6154, -0.6154, -0.6154, -0.615…
## $ X.CONT. <dbl> -0.7258, -0.4019, 0.0230, -0.3581, 0.3242, -0.4458, -0.1694,…
## $ X.PASS. <dbl> -1.4545, -0.9982, -1.4545, -1.4545, -1.4545, -1.4545, -1.454…
## $ X.PASTP. <dbl> -0.250, -0.250, -0.250, -0.250, -0.250, -0.250, -0.250, -0.2…
## $ X.PEAS. <dbl> -1.6538, -1.6538, -1.6538, -1.6538, -1.6538, -1.6538, -1.653…
## $ X.PIRE. <dbl> -0.6364, -0.6364, -0.6364, -0.6364, -0.6364, -0.6364, 0.5400…
## $ X.PRESP. <dbl> -0.5882, 0.2976, -0.5882, -0.5882, -0.5882, -0.5882, -0.5882…
## $ X.PRIV. <dbl> -1.7308, -0.5723, -0.1238, 0.5054, 0.2724, 0.5229, 0.3838, 0…
## $ X.PROD. <dbl> -0.8571, 0.0034, -0.8571, -0.8571, -0.1131, -0.4851, 0.6214,…
## $ X.PUBV. <dbl> -1.4259, -1.1470, 2.7007, 4.4007, 2.1909, 1.2265, 2.1676, 1.…
## $ X.SERE. <dbl> -0.2500, -0.2500, -0.2500, -0.2500, -0.2500, -0.2500, 2.9850…
## $ X.SMP. <dbl> -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, …
## $ X.SPAU. <dbl> -2.2000, -2.2000, -2.2000, -2.2000, -2.2000, -2.2000, -2.200…
## $ X.SPIN. <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ X.STPR. <dbl> -0.7407, 0.9326, -0.2248, -0.7407, -0.7407, 0.2237, 0.2174, …
## $ X.SUAV. <dbl> -0.9355, -0.9355, -0.0368, 1.7123, -0.5155, -0.0955, 2.4029,…
## $ X.THATD. <dbl> -0.7561, -0.7561, -0.7561, -0.4224, -0.4385, -0.1210, -0.756…
## $ X.WHCL. <dbl> -0.600, 0.906, 2.186, 2.136, 4.608, 0.702, 5.868, 3.271, 5.9…
## $ X.WHOBJ. <dbl> -0.8235, -0.8235, -0.8235, -0.8235, -0.8235, -0.8235, -0.823…
## $ X.WHQU. <dbl> -0.3333, -0.3333, -0.3333, 4.2267, 6.1767, 6.1767, -0.3333, …
## $ X.WHSUB. <dbl> -1.0500, -1.0500, -0.3535, -1.0500, -1.0500, -1.0500, -1.050…
## $ X.WZPAST. <dbl> -0.8065, -0.8065, -0.8065, -0.8065, -0.8065, -0.8065, -0.806…
## $ X.WZPRES. <dbl> -0.8889, -0.0522, -0.8889, -0.1289, -0.1656, -0.8889, 0.5483…
## $ Underused <chr> "AWL DEMO JJ PIN RB TO TTR VPRT [BEMA] [SPAU]", "DEMO RB [SP…
## $ Overused <chr> "NN", "AMP GER NN PHC PLACE", "NN PHC SPP2 [PUBV] [WHCL]", "…
TxBzscores <- TxBzscores %>% filter(Filename!="CORPUS" & Filename!="._Access_1_Informative_0001.txt") # Remove this row with mean values for the corpus
nrow(TxBzscores)
## [1] 1949
colnames(TxBzscores)
## [1] "Filename" "Level" "AMP" "ANDC" "AWL" "CAUS"
## [7] "CONC" "COND" "CONJ" "DEMO" "DEMP" "DPAR"
## [13] "DWNT" "EMPH" "EX" "FPP1" "GER" "HDG"
## [19] "INPR" "JJ" "NEMD" "NN" "NOMZ" "OSUB"
## [25] "PHC" "PIN" "PIT" "PLACE" "POMD" "PRED"
## [31] "PRMD" "RB" "SPP2" "SYNE" "THAC" "THVC"
## [37] "TIME" "TO" "TOBJ" "TPP3" "TSUB" "TTR"
## [43] "VBD" "VPRT" "XX0" "X.BEMA." "X.BYPA." "X.CONT."
## [49] "X.PASS." "X.PASTP." "X.PEAS." "X.PIRE." "X.PRESP." "X.PRIV."
## [55] "X.PROD." "X.PUBV." "X.SERE." "X.SMP." "X.SPAU." "X.SPIN."
## [61] "X.STPR." "X.SUAV." "X.THATD." "X.WHCL." "X.WHOBJ." "X.WHQU."
## [67] "X.WHSUB." "X.WZPAST." "X.WZPRES." "Underused" "Overused"
MAT_features <- read.csv(here("metadata", "MAT_features_zscores.csv"), header = F)
MAT_features <- MAT_features$V3 # Feature names without any spaces or hythens
colnames(TxBzscores) <- MAT_features
colnames(TxBzscores)
## [1] "Filename" "Level"
## [3] "Amplifiers" "Ind_clause_coord"
## [5] "AWL" "because"
## [7] "Coord_conj" "if_unless"
## [9] "although_though" "Demonstratives"
## [11] "Dem_pronouns" "Discourse_particles"
## [13] "Downtoners" "Emphatics"
## [15] "Existential_there" "FPP1"
## [17] "Gerunds" "Hedges"
## [19] "Ind_pronouns" "Attr_Adj"
## [21] "Necessity_modals" "Nouns"
## [23] "Nominalizations" "Adv_sub"
## [25] "Phrasal_coord" "Prepositions"
## [27] "it" "Place_adv"
## [29] "Poss_modals" "Pred_adj"
## [31] "Pred_modals" "Adverbs"
## [33] "SPP2" "Syn_negation"
## [35] "That_adj_comp" "That_verb_comp"
## [37] "Time_adv" "To_infinitives"
## [39] "That_rel_clause_obj" "TPP3"
## [41] "That_rel_clause_subj" "TTR"
## [43] "Past_tense" "Present_tense"
## [45] "Analytic_negation" "BE_main_verb"
## [47] "By_passives" "Contractions"
## [49] "Agentless_passives" "Past_participial_clauses"
## [51] "Perfect_aspect" "Pied_piping_relative_clauses"
## [53] "Present_part_clauses" "Private_verbs"
## [55] "Pro_verb_DO" "Public_verbs"
## [57] "Sentence_relatives" "seem_appear"
## [59] "Split_auxiliaries" "Split_infinitives"
## [61] "Stranded_prepositions" "Suasive_verbs"
## [63] "That_deletion" "WH_clauses"
## [65] "WH_rel_clauses_obj" "Direct_WH_questions"
## [67] "WH_rel_clauses_subj" "Past_part_WHIZ_del_rel"
## [69] "Present_part_WHIZ_del_rel" "Underused"
## [71] "Overused"
TxBzscores$Register <- as.factor(stringr::str_extract(TxBzscores$Filename, "Spoken|Narrative|Other|Personal|Informative|Instructional|Poetry")) # Add a variable for Textbook Register
TxBzscores$Register <-car::recode(TxBzscores$Register, "'Narrative' = 'Fiction'; 'Spoken' = 'Conversation'")
summary(TxBzscores$Register)
## Conversation Fiction Informative Instructional Personal
## 529 285 363 647 88
## Poetry
## 37
# Textbook Series variable
TxBzscores$Filename <- stringr::str_replace(TxBzscores$Filename, "English_In_Mind", "EIM")
TxBzscores$Filename <- stringr::str_replace(TxBzscores$Filename, "English_in_Mind", "EIM") # This is necessary because of inconsistencies in the use of capital letters for this series
TxBzscores$Filename <- stringr::str_replace(TxBzscores$Filename, "New_GreenLine", "NGL") # Otherwise the regex for GreenLine will override New_GreenLine
TxBzscores$Filename <- stringr::str_replace(TxBzscores$Filename, "Piece_of_cake", "POC") # Otherwise the regex for GreenLine will override New_GreenLine
TxBzscores$Series <- as.factor(stringr::str_extract(TxBzscores$Filename, "Access|Achievers|EIM|GreenLine|HT|NB|NM|POC|JTT|NGL|Solutions"))
summary(TxBzscores$Series)
## Access Achievers EIM GreenLine HT JTT NB NGL
## 282 238 174 206 114 130 45 300
## NM POC Solutions
## 58 92 310
TxBzscores$Series <-car::recode(TxBzscores$Series, "c('NB', 'JTT') = 'JTT'; c('NM', 'HT') = 'HT'")
# Textbook country variable
TxBzscores$Country <- TxBzscores$Series
TxBzscores$Country <- car::recode(TxBzscores$Series, "c('Access', 'GreenLine', 'NGL') = 'Germany'; c('Achievers', 'EIM', 'Solutions') = 'Spain'; c('HT', 'NB', 'NM', 'POC', 'JTT') = 'France'")
summary(TxBzscores$Country)
## France Germany Spain
## 439 788 722
TxBzscores$Level <- as.factor(TxBzscores$Level)
TxBdimensions <- read.delim(here("data", "TxB900MDA_dims.tsv"), header = TRUE)
filter(TxBdimensions, Filename=="CORPUS") # This row reports the mean values for each dimension
## Filename Level Dim1 Dim2 Dim3 Dim4 Dim5 Dim6
## 1 CORPUS <NA> 3.051 -1.6558 1.5119 -1.6541 -1.953 -1.6102
## TextType
## 1 Involved persuasion
TxBdimensions <- TxBdimensions %>% filter(Filename!="CORPUS") # Remove the row with mean values
glimpse(TxBdimensions)
## Rows: 1,949
## Columns: 9
## $ Filename <chr> "Access_1_Informative_0001.txt", "Access_1_Instructional_0001…
## $ Level <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "…
## $ Dim1 <dbl> -7.3851, -4.9261, -2.4381, -0.1935, -1.6453, 4.4156, -6.7901,…
## $ Dim2 <dbl> -4.1024, -2.4173, -0.6398, -3.3565, -4.2051, -3.2099, -3.4863…
## $ Dim3 <dbl> -0.9315, 5.1347, 4.7311, 4.5138, 4.6284, 5.5911, 4.4546, 2.16…
## $ Dim4 <dbl> -6.6663, -7.4853, -5.6705, -7.3240, -7.3409, -4.0795, -7.2812…
## $ Dim5 <dbl> -3.4638, -3.9201, -3.9201, -3.9201, -3.9201, -3.9201, -3.9201…
## $ Dim6 <dbl> -2.9757, -2.1686, -2.1922, -1.0148, -2.1161, -2.5710, -1.9589…
## $ TextType <chr> "General narrative exposition", "General narrative exposition…
# Register variable
TxBdimensions$Register <- as.factor(stringr::str_extract(TxBdimensions$Filename, "Spoken|Narrative|Other|Personal|Informative|Instructional|Poetry")) # Add a variable for Textbook Register
summary(TxBdimensions$Register)
## Informative Instructional Narrative Personal Poetry
## 363 647 285 88 37
## Spoken
## 529
TxBdimensions$Register <-car::recode(TxBdimensions$Register, "'Narrative' = 'Fiction'; 'Spoken' = 'Conversation'")
# Show me the Textbook Series variable for ease of plotting
TxBdimensions$Filename <- stringr::str_replace(TxBdimensions$Filename, "English_In_Mind", "EIM")
TxBdimensions$Filename <- stringr::str_replace(TxBdimensions$Filename, "English_in_Mind", "EIM") # This is necessary because of inconsistencies in the use of capital letters for this series
TxBdimensions$Filename <- stringr::str_replace(TxBdimensions$Filename, "New_GreenLine", "NGL") # Otherwise the regex for GreenLine will override New_GreenLine
TxBdimensions$Filename <- stringr::str_replace(TxBdimensions$Filename, "Piece_of_cake", "POC") # Otherwise the regex for GreenLine will override New_GreenLine
TxBdimensions$Series <- as.factor(stringr::str_extract(TxBdimensions$Filename, "Access|Achievers|EIM|GreenLine|HT|NB|NM|POC|JTT|NGL|Solutions"))
summary(TxBdimensions$Series)
## Access Achievers EIM GreenLine HT JTT NB NGL
## 282 238 174 206 114 130 45 300
## NM POC Solutions
## 58 92 310
# Match the level E French textbooks to their corresponding series
TxBdimensions$Series <-car::recode(TxBdimensions$Series, "c('NB', 'JTT') = 'JTT'; c('NM', 'HT') = 'HT'")
# Textbook country variable
TxBdimensions$Country <- TxBdimensions$Series
TxBdimensions$Country <- car::recode(TxBdimensions$Series, "c('Access', 'GreenLine', 'NGL') = 'Germany'; c('Achievers', 'EIM', 'Solutions') = 'Spain'; c('HT', 'NB', 'NM', 'POC', 'JTT') = 'France'")
summary(TxBdimensions$Country)
## France Germany Spain
## 439 788 722
TxBdimensions$Level <- as.factor(TxBdimensions$Level)
ggplot(TxBdimensions,aes(x=Register,y=Dim1, fill = Register, colour = Register))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(position = position_nudge(x = .25), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 1 (Biber 1988)') + xlab('Textbook Registers') +
theme_cowplot() +
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 1: Involved vs. Informational Discourse")
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -30, to = 40, by = 10))
#ggsave(here("plots", "TxB_Reg_Dim1.svg"), width = 10, height = 6)
#ggsave(here("plots", "TxB_Reg_Dim1.png"), width = 10, height = 6, dpi = 300)
Check the relationships among the predictor variables and the grouping variable.
# Plot 1
ggplot(TxBdimensions, aes(x = Level)) +
geom_bar() +
facet_grid(rows = vars(Series), cols = vars(Register))
# Plot 2 (more detailed)
fig_obs <- ggplot(TxBdimensions, aes(x = Level, y = Dim1)) +
geom_point(
shape = "circle filled",
fill = "grey",
position = position_jitter(width = 0.2, height = 0)
) +
facet_grid(rows = vars(Series), cols = vars(Register))
fig_obs
Basic observations: * There are relatively few ‘Personal’ and ‘Poetry’ texts. * Some series (‘POC’ and ‘Solutions’) have almost no fiction. * Some series (e.g. ‘POC’ and ‘Solutions’ again) have no level ‘E’ textbooks
Check the distribution of the outcome variable. Note that the y axis varies in scale so as to ‘zoom in’ on the shape of the distribution for those registers that contain much fewer texts.
fig_outcome <- ggplot(TxBdimensions, aes(x = Dim1)) +
geom_histogram(bins = 20) +
facet_grid(rows = vars(Register), cols = vars(Level), scales = "free_y")
fig_outcome
Aside from the fact that some combinations of Register
and Level
contain very few texts, Dim1
looks approximately normally distributed in each.
Data for Poetry is too sparse so I am excluding it from these models. Thus, the following models are for just four of the registers. Following Gries and others, I am following this method: 1. Fit baseline model with only random effect structure. 2. Fit all plausible models. 3. Check for (significant) differences between models.
TxBdim_nopoetry <- TxBdimensions %>% filter(Register != "Poetry") %>% droplevels(.)
summary(TxBdim_nopoetry$Register) # Check
## Conversation Fiction Informative Instructional Personal
## 529 285 363 647 88
md0 <- lmer(Dim1 ~ 1 + (1|Series), TxBdim_nopoetry, REML = FALSE)
md_register <- update(md0, .~. + Register)
md_level <- update(md0, . ~ . + Level)
md_both <- update(md_register, .~. + Level)
md_interaction <- update(md_both, . ~ . + Level:Register)
anova(md0, md_register, md_both, md_interaction)
## Data: TxBdim_nopoetry
## Models:
## md0: Dim1 ~ 1 + (1 | Series)
## md_register: Dim1 ~ (1 | Series) + Register
## md_both: Dim1 ~ (1 | Series) + Register + Level
## md_interaction: Dim1 ~ (1 | Series) + Register + Level + Register:Level
## npar AIC BIC logLik deviance Chisq Df
## md0 3 14620 14637 -7307.2 14614
## md_register 7 12689 12728 -6337.7 12675 1939.016 4
## md_both 11 12633 12694 -6305.4 12611 64.466 4
## md_interaction 27 12622 12772 -6284.1 12568 42.627 16
## Pr(>Chisq)
## md0
## md_register < 0.00000000000000022 ***
## md_both 0.0000000000003333 ***
## md_interaction 0.0003179 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(md0, md_level)
## Data: TxBdim_nopoetry
## Models:
## md0: Dim1 ~ 1 + (1 | Series)
## md_level: Dim1 ~ (1 | Series) + Level
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 3 14620 14637 -7307.2 14614
## md_level 7 14576 14615 -7281.1 14562 52.261 4 0.0000000001216 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
md_final <- lmer(Dim1 ~ (Register|Series) + Register + Level + Level:Register, TxBdim_nopoetry, REML = FALSE) # boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
tab_model(md_final)
Dim 1 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 16.41 | 14.35 – 18.47 | <0.001 |
Register [Fiction] | -6.53 | -9.06 – -4.00 | <0.001 |
Register [Informative] | -20.02 | -23.23 – -16.80 | <0.001 |
Register [Instructional] | -21.21 | -23.70 – -18.73 | <0.001 |
Register [Personal] | -5.87 | -9.69 – -2.05 | 0.003 |
Level [B] | 0.30 | -1.38 – 1.98 | 0.723 |
Level [C] | -0.41 | -2.08 – 1.26 | 0.631 |
Level [D] | -2.23 | -3.92 – -0.54 | 0.010 |
Level [E] | -1.68 | -3.61 – 0.25 | 0.088 |
Register [Fiction] * Level [B] |
-3.92 | -7.02 – -0.83 | 0.013 |
Register [Informative] * Level [B] |
-0.86 | -4.02 – 2.29 | 0.592 |
Register [Instructional] * Level [B] |
0.59 | -1.72 – 2.90 | 0.618 |
Register [Personal] * Level [B] |
-2.09 | -6.68 – 2.49 | 0.371 |
Register [Fiction] * Level [C] |
-4.33 | -7.44 – -1.21 | 0.006 |
Register [Informative] * Level [C] |
-0.45 | -3.47 – 2.57 | 0.771 |
Register [Instructional] * Level [C] |
1.36 | -0.92 – 3.65 | 0.242 |
Register [Personal] * Level [C] |
-0.81 | -5.47 – 3.84 | 0.732 |
Register [Fiction] * Level [D] |
-6.54 | -9.57 – -3.52 | <0.001 |
Register [Informative] * Level [D] |
-1.10 | -4.11 – 1.91 | 0.472 |
Register [Instructional] * Level [D] |
2.25 | -0.05 – 4.55 | 0.055 |
Register [Personal] * Level [D] |
0.06 | -4.82 – 4.94 | 0.982 |
Register [Fiction] * Level [E] |
-5.90 | -9.03 – -2.76 | <0.001 |
Register [Informative] * Level [E] |
-3.28 | -6.51 – -0.06 | 0.046 |
Register [Instructional] * Level [E] |
-0.07 | -2.62 – 2.48 | 0.957 |
Register [Personal] * Level [E] |
0.25 | -4.67 – 5.17 | 0.919 |
Random Effects | |||
σ2 | 38.31 | ||
τ00 Series | 6.07 | ||
τ11 Series.RegisterFiction | 1.03 | ||
τ11 Series.RegisterInformative | 9.07 | ||
τ11 Series.RegisterInstructional | 7.19 | ||
τ11 Series.RegisterPersonal | 3.20 | ||
ρ01 | -0.27 | ||
0.19 | |||
-0.67 | |||
0.29 | |||
ICC | 0.17 | ||
N Series | 9 | ||
Observations | 1912 | ||
Marginal R2 / Conditional R2 | 0.645 / 0.706 |
The model fit is singular.
The summary of the random effects can tell us more. It shows the variance-covariance matrix for the random effect estimates.
VarCorr(md_final)
## Groups Name Std.Dev. Corr
## Series (Intercept) 2.4638
## RegisterFiction 1.0125 -0.274
## RegisterInformative 3.0117 0.194 -0.688
## RegisterInstructional 2.6812 -0.675 0.458 0.041
## RegisterPersonal 1.7891 0.288 -0.995 0.754 -0.435
## Residual 6.1896
md_final_ranefs <- tidy(md_final, effects = "ran_vals")
head(md_final_ranefs)
## # A tibble: 6 × 6
## effect group level term estimate std.error
## <chr> <chr> <chr> <chr> <dbl> <dbl>
## 1 ran_vals Series Access (Intercept) -0.842 0.461
## 2 ran_vals Series Achievers (Intercept) -1.03 0.742
## 3 ran_vals Series EIM (Intercept) 4.88 0.748
## 4 ran_vals Series GreenLine (Intercept) 1.25 0.588
## 5 ran_vals Series HT (Intercept) -2.04 0.646
## 6 ran_vals Series JTT (Intercept) -0.746 0.674
To look at the association between intercepts and slopes, we need the values in the term
column as separate columns.
md_final_ranefs %>%
pivot_wider(
id_cols = c(group, level),
names_from = term,
values_from = estimate
) ->
md_final_ranefs
head(md_final_ranefs)
## # A tibble: 6 × 7
## group level `(Intercept)` RegisterFiction RegisterInformat… RegisterInstruc…
## <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Series Access -0.842 1.00 -0.0521 3.01
## 2 Series Achie… -1.03 -1.19 4.53 1.52
## 3 Series EIM 4.88 -0.800 0.781 -5.42
## 4 Series Green… 1.25 0.447 1.91 2.30
## 5 Series HT -2.04 1.34 -4.95 0.515
## 6 Series JTT -0.746 0.593 -4.01 -0.374
## # … with 1 more variable: RegisterPersonal <dbl>
Now we can plot a matrix of correlations among the estimated random effects.
md_final_ranefs %>%
select(`(Intercept)`, starts_with("Register")) %>%
ggpairs(
lower = list(continuous = wrap("smooth_lm", shape = "circle filled", fill = "grey", se = FALSE)),
diag = "blank",
upper = list(continuous = wrap("cor", stars = FALSE))
)
The scatterplots show close linear relationships among some of the estimates. In particular, the estimates for the random effect of the ‘Personal’ register are closely correlated with ‘Fiction’ and ‘Informative,’ as was also the case in the estimated covariance matrix. Zoom in on this correlation to understand what each plot in the matrix represents.
fig_ranef_cor <- ggplot(md_final_ranefs,
aes(x = RegisterFiction, y = RegisterPersonal, label = level)) +
geom_point(shape = "bullet") +
geom_text(hjust = "inward")
fig_ranef_cor
In general, the higher the estimated Dim1
for Personal Communication texts in a given textbook series, the lower the estimated Dim1
for Fiction in that same series. Hence, in a certain sense, some of these random slopes for Register
are providing ‘redundant’ information. If the random effect for one register is almost perfectly correlated with another, then there is no need for them both. Indeed, this redundancy can make it difficult to estimate both reliably.
TxBdim_nopoetry <- TxBdimensions %>% filter(Register != "Poetry") %>% droplevels(.)
summary(TxBdim_nopoetry$Register) # Check
## Conversation Fiction Informative Instructional Personal
## 529 285 363 647 88
md_final <- lmer(Dim1 ~ (1|Series) + Register + Level + Level:Register, TxBdim_nopoetry, REML = FALSE) # no warnings
tab_model(md_final, wrap.labels = 100)
Dim 1 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 16.34 | 14.41 – 18.26 | <0.001 |
Register [Fiction] | -6.96 | -9.44 – -4.47 | <0.001 |
Register [Informative] | -18.95 | -21.54 – -16.36 | <0.001 |
Register [Instructional] | -21.42 | -23.23 – -19.62 | <0.001 |
Register [Personal] | -5.29 | -9.03 – -1.56 | 0.006 |
Level [B] | 0.62 | -1.12 – 2.36 | 0.485 |
Level [C] | -0.28 | -2.01 – 1.45 | 0.753 |
Level [D] | -2.19 | -3.94 – -0.44 | 0.014 |
Level [E] | -1.27 | -3.25 – 0.71 | 0.208 |
Register [Fiction] * Level [B] | -4.09 | -7.30 – -0.88 | 0.013 |
Register [Informative] * Level [B] | -1.80 | -5.07 – 1.46 | 0.279 |
Register [Instructional] * Level [B] | 0.21 | -2.19 – 2.60 | 0.866 |
Register [Personal] * Level [B] | -2.82 | -7.56 – 1.91 | 0.243 |
Register [Fiction] * Level [C] | -4.09 | -7.31 – -0.86 | 0.013 |
Register [Informative] * Level [C] | -0.61 | -3.74 – 2.52 | 0.703 |
Register [Instructional] * Level [C] | 1.20 | -1.17 – 3.57 | 0.321 |
Register [Personal] * Level [C] | -1.53 | -6.34 – 3.29 | 0.534 |
Register [Fiction] * Level [D] | -6.06 | -9.19 – -2.93 | <0.001 |
Register [Informative] * Level [D] | -1.37 | -4.48 – 1.73 | 0.386 |
Register [Instructional] * Level [D] | 2.21 | -0.17 – 4.60 | 0.069 |
Register [Personal] * Level [D] | -0.46 | -5.49 – 4.56 | 0.856 |
Register [Fiction] * Level [E] | -5.64 | -8.87 – -2.40 | 0.001 |
Register [Informative] * Level [E] | -4.45 | -7.71 – -1.18 | 0.008 |
Register [Instructional] * Level [E] | -0.24 | -2.83 – 2.35 | 0.857 |
Register [Personal] * Level [E] | -0.53 | -5.58 – 4.52 | 0.836 |
Random Effects | |||
σ2 | 41.29 | ||
τ00 Series | 4.60 | ||
ICC | 0.10 | ||
N Series | 9 | ||
Observations | 1912 | ||
Marginal R2 / Conditional R2 | 0.647 / 0.682 |
The basic checks look okay: * No warnings about problems with the fitting. * The variance of the random effects is not zero. * None of the standard errors are really huge (although those for the interactions involving the ‘Personal’ register are larger because data is sparse for this register).
# check distribution of residuals
plot(md_final)
# We can access the estimated deviation between each series average Dim1 1 and the overall average:
ranef(md_final)
## $Series
## (Intercept)
## Access 0.04163842
## Achievers 0.82686763
## EIM 2.80050868
## GreenLine 2.41507553
## HT -2.81224079
## JTT -1.79858728
## NGL 2.35060266
## POC -2.68886659
## Solutions -1.13499826
##
## with conditional variances for "Series"
TxBdim_nopoetry[, "predicted"] <- predict(md_final)
p <- ggplot(TxBdim_nopoetry, aes(x = Level, y = Dim1)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
facet_grid(rows = vars(Series), cols = vars(Register)) +
geom_point(aes(y = predicted), shape = "triangle filled", fill = "red")+
labs(y = "Dimension 1 (Biber 1988)", x = "Textbook Level")
top_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Register") +
theme_void()
right_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Series", angle = -90) +
theme_void()
blank_panel <- ggplot() +
theme_void()
jpeg(here("plots", "TxB_Dim1_Pred_Obs_1Series_RS.jpeg"), height = 30, width = 20, units = "cm", res = 300)
gridExtra::grid.arrange(
top_label, blank_panel, p, right_label,
nrow = 2, ncol = 2,
widths = c(30, 1), heights = c(1, 30)
)
#dev.off()
# Save plot using Rstudio export function (dimensions: 600 to 900 work well)
Register_results <- emmeans(md_final, "Register")
## NOTE: Results may be misleading due to involvement in interactions
summary(Register_results)
## Register emmean SE df lower.CL upper.CL
## Conversation 15.71 0.818 12.7 13.94 17.48
## Fiction 4.78 0.868 16.4 2.94 6.62
## Informative -4.89 0.850 15.0 -6.70 -3.07
## Instructional -5.04 0.806 11.9 -6.79 -3.28
## Personal 9.35 1.038 35.3 7.24 11.45
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
Level_results <- emmeans(md_final, "Level")
## NOTE: Results may be misleading due to involvement in interactions
summary(Level_results)
## Level emmean SE df lower.CL upper.CL
## A 5.81 0.920 21.2 3.898 7.72
## B 4.73 0.863 16.1 2.898 6.56
## C 4.53 0.863 16.0 2.699 6.36
## D 2.48 0.869 16.6 0.644 4.32
## E 2.37 0.877 17.1 0.519 4.22
##
## Results are averaged over the levels of: Register
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
comparisons <- pairs(Register_results, adjust = "tukey")
comparisons
## contrast estimate SE df t.ratio p.value
## Conversation - Fiction 10.93 0.505 1936 21.645 <.0001
## Conversation - Informative 20.60 0.478 1933 43.096 <.0001
## Conversation - Instructional 20.75 0.394 1933 52.684 <.0001
## Conversation - Personal 6.36 0.763 1930 8.342 <.0001
## Fiction - Informative 9.67 0.564 1936 17.148 <.0001
## Fiction - Instructional 9.82 0.487 1936 20.151 <.0001
## Fiction - Personal -4.57 0.812 1930 -5.621 <.0001
## Informative - Instructional 0.15 0.452 1929 0.332 0.9974
## Informative - Personal -14.23 0.795 1928 -17.893 <.0001
## Instructional - Personal -14.38 0.748 1928 -19.233 <.0001
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 5 estimates
confint(comparisons)
## contrast estimate SE df lower.CL upper.CL
## Conversation - Fiction 10.93 0.505 1936 9.55 12.31
## Conversation - Informative 20.60 0.478 1933 19.29 21.90
## Conversation - Instructional 20.75 0.394 1933 19.67 21.82
## Conversation - Personal 6.36 0.763 1930 4.28 8.45
## Fiction - Informative 9.67 0.564 1936 8.13 11.21
## Fiction - Instructional 9.82 0.487 1936 8.49 11.15
## Fiction - Personal -4.57 0.812 1930 -6.78 -2.35
## Informative - Instructional 0.15 0.452 1929 -1.08 1.38
## Informative - Personal -14.23 0.795 1928 -16.40 -12.06
## Instructional - Personal -14.38 0.748 1928 -16.42 -12.34
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 5 estimates
visreg(md_final, xvar = "Series", by="Register", type = "conditional", re.form=~(1|Series), line=list(col="darkred"), xlab = "Textbook Series", ylab = "Dimension 1 (Biber 1988)", layout=c(2,3))
Dim1 <- TxBzscores %>%
dplyr::select(Register, Private_verbs, That_deletion, Contractions, Present_tense, SPP2, Pro_verb_DO, Analytic_negation, Dem_pronouns, Emphatics, FPP1, it, BE_main_verb, because, Discourse_particles, Ind_pronouns, Hedges, Amplifiers, Sentence_relatives, Direct_WH_questions, Poss_modals, Ind_clause_coord, WH_clauses, Stranded_prepositions, Nouns, AWL, Prepositions, TTR, Attr_Adj) %>%
group_by(Register) %>%
summarise_all(mean) %>%
mutate_if(is.numeric, round, digits = 2) %>%
t()
head(Dim1)
## [,1] [,2] [,3] [,4] [,5]
## Register "Conversation" "Fiction" "Informative" "Instructional" "Personal"
## Private_verbs " 0.19" " 0.23" "-0.39" " 0.58" " 0.06"
## That_deletion " 0.3" " 0.0" "-0.3" "-0.2" " 0.1"
## Contractions " 1.56" " 0.47" "-0.19" "-0.46" " 1.13"
## Present_tense " 0.26" "-0.66" "-0.66" "-0.81" "-0.15"
## SPP2 "1.52" "0.35" "0.05" "2.55" "0.94"
## [,6]
## Register "Poetry"
## Private_verbs " 0.00"
## That_deletion " 0.1"
## Contractions " 1.23"
## Present_tense " 0.10"
## SPP2 "1.19"
# Rainplots for all textbook registers on Dimension 2
TxBdimensions %>%
group_by(Register) %>%
summarise(mean = mean(Dim2), sd = sd(Dim2)) %>%
mutate_if(is.numeric, round, digits = 2)
## # A tibble: 6 × 3
## Register mean sd
## <fct> <dbl> <dbl>
## 1 Conversation -3.17 2.05
## 2 Fiction 2.53 2.83
## 3 Informative -1.51 2.78
## 4 Instructional -2.25 1.63
## 5 Personal -2.31 2.22
## 6 Poetry -1.57 4.21
ggplot(TxBdimensions,aes(x=Register,y=Dim2, fill = Register, colour = Register))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
geom_boxplot(position = position_nudge(x = .25), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 2 (Biber 1988)')+xlab('Textbook Registers') +
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 2: Narrative vs. Non-narrative Concerns") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 20, by = 5))
#ggsave(here("plots", "TxB_Reg_Dim2.svg"), width = 10, height = 6)
# Consider filtering out the outlier in Poetry: Solutions_Elementary_Poetry_0001.txt
# Very high score due to repetition of "Ain't got no..." which is tagged as past tense verb (0.90) + synthetic negation (0.40), both of which score positively on factor 2.
# Removing clear outliner
TxBdimensions2 <- TxBdimensions %>% filter(Filename!="Solutions_Elementary_Poetry_0001.txt")
ggplot(TxBdimensions2,aes(x=Register,y=Dim2, fill = Register, colour = Register))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim2), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 2 (Biber 1988)')+xlab('Textbook Registers')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_y_continuous(breaks = scales::pretty_breaks(n = 5)) +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 2: Narrative vs. Non-narrative Concerns")
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 15, by = 5))
## Scale for 'y' is already present. Adding another scale for 'y', which will
## replace the existing scale.
#ggsave(here("plots", "TxB_Reg_Dim2.svg"), width = 10, height = 6)
md_final2 <- lmer(Dim2 ~ (1|Series) + Register + Level + Level:Register, TxBdim_nopoetry, REML = FALSE) # no warnings
tab_model(md_final2, wrap.labels = 100)
Dim 2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -4.09 | -4.52 – -3.65 | <0.001 |
Register [Fiction] | 3.95 | 3.14 – 4.76 | <0.001 |
Register [Informative] | 0.71 | -0.13 – 1.56 | 0.097 |
Register [Instructional] | 1.36 | 0.77 – 1.95 | <0.001 |
Register [Personal] | 0.57 | -0.64 – 1.79 | 0.357 |
Level [B] | 0.27 | -0.30 – 0.83 | 0.357 |
Level [C] | 0.90 | 0.33 – 1.46 | 0.002 |
Level [D] | 1.74 | 1.17 – 2.31 | <0.001 |
Level [E] | 1.78 | 1.14 – 2.41 | <0.001 |
Register [Fiction] * Level [B] | 2.79 | 1.74 – 3.84 | <0.001 |
Register [Informative] * Level [B] | 0.69 | -0.37 – 1.76 | 0.203 |
Register [Instructional] * Level [B] | -0.19 | -0.97 – 0.59 | 0.629 |
Register [Personal] * Level [B] | -0.21 | -1.75 – 1.34 | 0.790 |
Register [Fiction] * Level [C] | 2.71 | 1.66 – 3.77 | <0.001 |
Register [Informative] * Level [C] | 0.77 | -0.25 – 1.79 | 0.140 |
Register [Instructional] * Level [C] | -0.46 | -1.23 – 0.32 | 0.246 |
Register [Personal] * Level [C] | 0.65 | -0.92 – 2.22 | 0.415 |
Register [Fiction] * Level [D] | 1.25 | 0.23 – 2.27 | 0.016 |
Register [Informative] * Level [D] | 0.69 | -0.32 – 1.70 | 0.183 |
Register [Instructional] * Level [D] | -1.05 | -1.83 – -0.28 | 0.008 |
Register [Personal] * Level [D] | 0.26 | -1.37 – 1.90 | 0.753 |
Register [Fiction] * Level [E] | 0.97 | -0.09 – 2.02 | 0.072 |
Register [Informative] * Level [E] | 0.84 | -0.22 – 1.91 | 0.120 |
Register [Instructional] * Level [E] | -0.68 | -1.53 – 0.16 | 0.113 |
Register [Personal] * Level [E] | 0.67 | -0.97 – 2.32 | 0.423 |
Random Effects | |||
σ2 | 4.40 | ||
τ00 Series | 0.01 | ||
ICC | 0.00 | ||
N Series | 9 | ||
Observations | 1912 | ||
Marginal R2 / Conditional R2 | 0.472 / 0.474 |
# check distribution of residuals
library(predictmeans)
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
##
## collapse
## The following object is masked from 'package:lme4':
##
## lmList
## Loading required package: parallel
residplot(md_final2)
# We can access the estimated deviation between each series average Dim2 and the overall average:
ranef(md_final2)
## $Series
## (Intercept)
## Access -0.010235255
## Achievers -0.020008877
## EIM 0.060406291
## GreenLine -0.009780533
## HT -0.009027618
## JTT 0.007276723
## NGL -0.063482158
## POC -0.077522890
## Solutions 0.122374316
##
## with conditional variances for "Series"
TxBdim_nopoetry[, "predicted"] <- predict(md_final2)
p <- ggplot(TxBdim_nopoetry, aes(x = Level, y = Dim2)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
facet_grid(rows = vars(Series), cols = vars(Register)) +
geom_point(aes(y = predicted), shape = "triangle filled", fill = "red")+
labs(y = "Dimension 2 (Biber 1988)", x = "Textbook Level")
top_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Register") +
theme_void()
right_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Series", angle = -90) +
theme_void()
blank_panel <- ggplot() +
theme_void()
grid.arrange(
top_label, blank_panel, p, right_label,
nrow = 2, ncol = 2,
widths = c(30, 1), heights = c(1, 30)
)
# Save plot using Rstudio export function (dimensions: 600 to 900 work well)
Register_results2 <- emmeans(md_final2, "Register")
## NOTE: Results may be misleading due to involvement in interactions
summary(Register_results2)
## Register emmean SE df lower.CL upper.CL
## Conversation -3.15 0.1045 67.8 -3.36 -2.94
## Fiction 2.34 0.1393 157.5 2.07 2.62
## Informative -1.84 0.1288 164.0 -2.09 -1.58
## Instructional -2.26 0.0941 51.5 -2.45 -2.08
## Personal -2.30 0.2329 1072.3 -2.76 -1.84
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
comparisons2 <- pairs(Register_results2, adjust = "tukey")
comparisons2
## contrast estimate SE df t.ratio p.value
## Conversation - Fiction -5.4934 0.163 1475 -33.685 <.0001
## Conversation - Informative -1.3126 0.155 1717 -8.464 <.0001
## Conversation - Instructional -0.8846 0.128 1687 -6.923 <.0001
## Conversation - Personal -0.8477 0.248 1930 -3.414 0.0059
## Fiction - Informative 4.1808 0.182 1283 22.960 <.0001
## Fiction - Instructional 4.6088 0.157 1483 29.269 <.0001
## Fiction - Personal 4.6457 0.264 1917 17.582 <.0001
## Informative - Instructional 0.4280 0.147 1935 2.905 0.0304
## Informative - Personal 0.4650 0.259 1938 1.793 0.3779
## Instructional - Personal 0.0369 0.244 1935 0.151 0.9999
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 5 estimates
# Visualising effects
visreg(md_final2, xvar = "Level", by="Register", type = "conditional", line=list(col="darkred"), xlab = "Textbook Level", ylab = "Dimension 2 (Biber 1988)")
# Group differences
emmeans(md_final2, ~ Level*Register)
## Level Register emmean SE df lower.CL upper.CL
## A Conversation -4.085 0.223 870 -4.524 -3.6468
## B Conversation -3.819 0.198 680 -4.207 -3.4313
## C Conversation -3.188 0.198 633 -3.575 -2.7997
## D Conversation -2.342 0.202 626 -2.738 -1.9454
## E Conversation -2.310 0.250 982 -2.800 -1.8206
## A Fiction -0.136 0.357 1547 -0.836 0.5633
## B Fiction 2.921 0.291 1172 2.350 3.4914
## C Fiction 3.476 0.295 1341 2.898 4.0545
## D Fiction 2.858 0.259 1154 2.349 3.3656
## E Fiction 2.605 0.254 1116 2.107 3.1019
## A Informative -3.371 0.377 1722 -4.109 -2.6322
## B Informative -2.413 0.279 1335 -2.960 -1.8656
## C Informative -1.705 0.232 927 -2.160 -1.2493
## D Informative -0.940 0.217 893 -1.366 -0.5143
## E Informative -0.753 0.233 954 -1.209 -0.2961
## A Instructional -2.724 0.212 899 -3.141 -2.3066
## B Instructional -2.650 0.187 649 -3.017 -2.2833
## C Instructional -2.284 0.181 589 -2.638 -1.9293
## D Instructional -2.033 0.180 580 -2.386 -1.6795
## E Instructional -1.631 0.200 660 -2.024 -1.2380
## A Personal -3.513 0.587 1918 -4.665 -2.3611
## B Personal -3.457 0.453 1841 -4.345 -2.5694
## C Personal -1.963 0.474 1888 -2.893 -1.0338
## D Personal -1.506 0.530 1906 -2.545 -0.4675
## E Personal -1.066 0.514 1890 -2.075 -0.0575
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
# Rainplots for all textbook registers on Dimension 3
TxBdimensions %>% group_by(Register) %>% summarise(mean = mean(Dim3), sd = sd(Dim3))
## # A tibble: 6 × 3
## Register mean sd
## <fct> <dbl> <dbl>
## 1 Conversation -0.445 2.37
## 2 Fiction -0.649 2.74
## 3 Informative 3.12 3.07
## 4 Instructional 3.52 2.82
## 5 Personal -0.829 2.96
## 6 Poetry 0.919 3.77
ggplot(TxBdimensions,aes(x=Register,y=Dim3, fill = Register, colour = Register))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
geom_boxplot(position = position_nudge(x = .25), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 3 (Biber 1988)')+xlab('Textbook Registers')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 3: Explicit vs. Situation-Dependent Reference") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 20, by = 5))
#ggsave(here("plots", "TxB_Reg_Dim3.svg"), width = 10, height = 6)
Dim3 <- TxBzscores %>%
select(Register, WH_rel_clauses_obj, Pied_piping_relative_clauses, WH_rel_clauses_subj, Phrasal_coord, Nominalizations, Time_adv, Place_adv, Adverbs) %>%
group_by(Register) %>%
summarise_all(mean) %>%
mutate_if(is.numeric, round, digits = 2) %>%
t()
Dim3
## [,1] [,2] [,3]
## Register "Conversation" "Fiction" "Informative"
## WH_rel_clauses_obj "-0.75" "-0.76" "-0.63"
## Pied_piping_relative_clauses "-0.59" "-0.59" "-0.45"
## WH_rel_clauses_subj "-0.63" "-0.59" "-0.11"
## Phrasal_coord "0.60" "1.39" "2.40"
## Nominalizations "-0.91" "-0.95" "-0.30"
## Time_adv " 0.19" " 0.34" "-0.10"
## Place_adv "-0.11" " 0.77" " 0.24"
## Adverbs "-1.33" "-1.38" "-1.89"
## [,4] [,5] [,6]
## Register "Instructional" "Personal" "Poetry"
## WH_rel_clauses_obj "-0.58" "-0.80" "-0.80"
## Pied_piping_relative_clauses "-0.26" "-0.64" "-0.57"
## WH_rel_clauses_subj "-0.71" "-0.63" "-0.62"
## Phrasal_coord "2.31" "1.06" "2.81"
## Nominalizations " 0.35" "-0.85" "-1.11"
## Time_adv "-0.35" " 0.88" " 0.15"
## Place_adv " 0.39" " 0.10" " 0.62"
## Adverbs "-2.18" "-1.36" "-1.42"
md_final3 <- lmer(Dim3 ~ (1|Series) + Register + Level + Level:Register, TxBdim_nopoetry, REML = FALSE) # no warnings
tab_model(md_final3, wrap.labels = 100)
Dim 3 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -0.18 | -1.13 – 0.77 | 0.715 |
Register [Fiction] | -0.15 | -1.10 – 0.81 | 0.764 |
Register [Informative] | 3.03 | 2.04 – 4.03 | <0.001 |
Register [Instructional] | 5.16 | 4.46 – 5.85 | <0.001 |
Register [Personal] | -0.04 | -1.47 – 1.39 | 0.957 |
Level [B] | -0.29 | -0.96 – 0.37 | 0.389 |
Level [C] | -0.24 | -0.91 – 0.42 | 0.471 |
Level [D] | 0.52 | -0.15 – 1.19 | 0.128 |
Level [E] | -0.08 | -0.84 – 0.67 | 0.829 |
Register [Fiction] * Level [B] | 0.35 | -0.89 – 1.58 | 0.582 |
Register [Informative] * Level [B] | 0.48 | -0.77 – 1.74 | 0.450 |
Register [Instructional] * Level [B] | -0.89 | -1.81 – 0.03 | 0.058 |
Register [Personal] * Level [B] | 0.18 | -1.64 – 2.00 | 0.844 |
Register [Fiction] * Level [C] | -0.15 | -1.39 – 1.09 | 0.809 |
Register [Informative] * Level [C] | 1.08 | -0.12 – 2.28 | 0.077 |
Register [Instructional] * Level [C] | -1.52 | -2.43 – -0.61 | 0.001 |
Register [Personal] * Level [C] | -0.56 | -2.41 – 1.28 | 0.550 |
Register [Fiction] * Level [D] | -0.05 | -1.25 – 1.15 | 0.934 |
Register [Informative] * Level [D] | -0.14 | -1.33 – 1.06 | 0.821 |
Register [Instructional] * Level [D] | -2.13 | -3.04 – -1.21 | <0.001 |
Register [Personal] * Level [D] | -2.10 | -4.03 – -0.17 | 0.033 |
Register [Fiction] * Level [E] | -0.52 | -1.76 – 0.72 | 0.411 |
Register [Informative] * Level [E] | 1.07 | -0.18 – 2.32 | 0.094 |
Register [Instructional] * Level [E] | -1.08 | -2.07 – -0.08 | 0.033 |
Register [Personal] * Level [E] | 0.18 | -1.75 – 2.12 | 0.852 |
Random Effects | |||
σ2 | 6.08 | ||
τ00 Series | 1.51 | ||
ICC | 0.20 | ||
N Series | 9 | ||
Observations | 1912 | ||
Marginal R2 / Conditional R2 | 0.353 / 0.482 |
# check distribution of residuals
residplot(md_final3)
# We can access the estimated deviation between each series average Dim3 and the overall average:
ranef(md_final3)
## $Series
## (Intercept)
## Access -0.6912930
## Achievers -0.6174253
## EIM -1.1919483
## GreenLine -0.8109561
## HT 1.9421314
## JTT 1.6915190
## NGL -0.2658934
## POC 1.3291986
## Solutions -1.3853329
##
## with conditional variances for "Series"
TxBdim_nopoetry[, "predicted"] <- predict(md_final3)
p <- ggplot(TxBdim_nopoetry, aes(x = Level, y = Dim3)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
facet_grid(rows = vars(Series), cols = vars(Register)) +
geom_point(aes(y = predicted), shape = "triangle filled", fill = "red")+
labs(y = "Dimension 3 (Biber 1988)", x = "Textbook Level")
top_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Register") +
theme_void()
right_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Series", angle = -90) +
theme_void()
blank_panel <- ggplot() +
theme_void()
grid.arrange(
top_label, blank_panel, p, right_label,
nrow = 2, ncol = 2,
widths = c(30, 1), heights = c(1, 30)
)
# Save plot using Rstudio export function (dimensions: 600 to 900 work well)
Register_results3 <- emmeans(md_final3, "Register")
## NOTE: Results may be misleading due to involvement in interactions
summary(Register_results3)
## Register emmean SE df lower.CL upper.CL
## Conversation -0.197 0.450 11.3 -1.19 0.792
## Fiction -0.419 0.464 12.8 -1.42 0.585
## Informative 3.334 0.459 12.2 2.34 4.332
## Instructional 3.837 0.447 10.9 2.85 4.822
## Personal -0.696 0.513 19.8 -1.77 0.375
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
comparisons3 <- pairs(Register_results3, adjust = "tukey")
comparisons3
## contrast estimate SE df t.ratio p.value
## Conversation - Fiction 0.222 0.194 1932 1.145 0.7824
## Conversation - Informative -3.531 0.183 1930 -19.250 <.0001
## Conversation - Instructional -4.034 0.151 1930 -26.689 <.0001
## Conversation - Personal 0.499 0.293 1929 1.703 0.4321
## Fiction - Informative -3.753 0.216 1932 -17.343 <.0001
## Fiction - Instructional -4.256 0.187 1932 -22.759 <.0001
## Fiction - Personal 0.277 0.312 1929 0.888 0.9015
## Informative - Instructional -0.503 0.173 1928 -2.898 0.0311
## Informative - Personal 4.030 0.305 1928 13.202 <.0001
## Instructional - Personal 4.533 0.287 1928 15.795 <.0001
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 5 estimates
# Visualise effects
# Levels
visreg::visreg(md_final3, xvar = "Level", by="Register", type = "conditional", line=list(col="darkred"), xlab = "Textbook Level", ylab = "Dimension 3 (Biber 1988)")
# Textbook Series (random effect)
v <- visreg::visreg(md_final3, "Register", by="Series", re.form=~(1|Series), plot=FALSE)
plot(v, ylab="Dimension 3 (Biber 1988)", line=list(col="darkred"))
visreg(md_final3, xvar = "Series", by="Register", type = "conditional", re.form=~(1|Series), line=list(col="darkred"), xlab = "Textbook Series", ylab = "Dimension 3 (Biber 1988)", layout=c(1,5))
# Textual analysis
Dim3zscores <- TxBzscores %>%
select(Series, WH_rel_clauses_obj, WH_rel_clauses_subj, Pied_piping_relative_clauses, Phrasal_coord, Nominalizations, Place_adv, Time_adv, Adverbs) %>%
group_by(Series) %>%
summarise_all(mean) %>%
mutate_if(is.numeric, round, digits = 2) %>%
t()
Dim3zscores
## [,1] [,2] [,3] [,4] [,5]
## Series "Access" "Achievers" "EIM" "GreenLine" "HT"
## WH_rel_clauses_obj "-0.75" "-0.63" "-0.62" "-0.72" "-0.65"
## WH_rel_clauses_subj "-0.67" "-0.72" "-0.66" "-0.61" "-0.40"
## Pied_piping_relative_clauses "-0.51" "-0.47" "-0.51" "-0.46" "-0.33"
## Phrasal_coord "1.57" "2.12" "1.25" "1.27" "2.40"
## Nominalizations "-0.76" " 0.10" "-0.49" "-0.70" " 0.01"
## Place_adv " 0.35" " 0.53" "-0.20" " 0.08" "-0.18"
## Time_adv " 0.16" " 0.14" " 0.32" " 0.12" "-0.25"
## Adverbs "-1.57" "-1.85" "-1.63" "-1.64" "-1.93"
## [,6] [,7] [,8] [,9]
## Series "JTT" "NGL" "POC" "Solutions"
## WH_rel_clauses_obj "-0.74" "-0.72" "-0.73" "-0.56"
## WH_rel_clauses_subj "-0.44" "-0.40" "-0.51" "-0.53"
## Pied_piping_relative_clauses "-0.39" "-0.50" "-0.50" "-0.42"
## Phrasal_coord "2.38" "1.39" "1.94" "1.37"
## Nominalizations "-0.25" "-0.56" "-0.24" "-0.31"
## Place_adv "-0.08" " 0.23" "-0.44" " 1.10"
## Time_adv "-0.41" "-0.01" "-0.36" " 0.03"
## Adverbs "-2.08" "-1.49" "-1.96" "-1.74"
ggplot(TxBdimensions,aes(x=Register,y=Dim4, fill = Register, colour = Register))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim4), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 4 (Biber 1988)')+xlab('Textbook Registers')+ theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 4: Overt Expression of Persuasion") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 25, by = 5))
#ggsave(here("plots", "TxB_Reg_Dim4.svg"), width = 10, height = 6)
TxBdimensions %>% filter(Dim4>20) # Outlier
## Filename Level Dim1 Dim2 Dim3 Dim4 Dim5
## 1 JTT_5_Informative_0007.txt B 21.3275 -0.9109 -1.5774 25.5345 1.0514
## Dim6 TextType Register Series Country
## 1 -1.1141 Informational interaction Informative JTT France
TxBdimensions %>% group_by(Register) %>% summarise(mean = mean(Dim4))
## # A tibble: 6 × 2
## Register mean
## <fct> <dbl>
## 1 Conversation -1.33
## 2 Fiction -1.69
## 3 Informative -1.72
## 4 Instructional -2.10
## 5 Personal -0.366
## 6 Poetry -0.340
TxBdimensions2 <- TxBdimensions %>% filter(Filename!="JTT_5_Informative_0007.txt") # Remove outlier for testing
ggplot(TxBdimensions2,aes(x=Register,y=Dim4, fill = Register, colour = Register))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim4), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 4 (Biber 1988)')+xlab('Textbook Registers')+ theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 4: Overt Expression of Persuasion") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 25, by = 5))
#ggsave(here("plots", "TxB_Reg_Dim4.svg"), width = 10, height = 6)
TxBdim2_nopoetry <- TxBdimensions2 %>% filter(Register != "Poetry") %>% droplevels(.)
summary(TxBdim_nopoetry$Register) # Check
## Conversation Fiction Informative Instructional Personal
## 529 285 363 647 88
md_final4 <- lmer(Dim4 ~ (1|Series) + Register + Level + Level:Register, TxBdim2_nopoetry, REML = FALSE) # no warnings
tab_model(md_final4, wrap.labels = 100)
Dim 4 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -5.74 | -6.56 – -4.91 | <0.001 |
Register [Fiction] | 1.01 | -0.23 – 2.24 | 0.110 |
Register [Informative] | 0.98 | -0.30 – 2.27 | 0.134 |
Register [Instructional] | 1.75 | 0.85 – 2.64 | <0.001 |
Register [Personal] | 0.49 | -1.37 – 2.34 | 0.608 |
Level [B] | 3.83 | 2.97 – 4.70 | <0.001 |
Level [C] | 5.96 | 5.11 – 6.82 | <0.001 |
Level [D] | 5.69 | 4.82 – 6.56 | <0.001 |
Level [E] | 6.38 | 5.39 – 7.36 | <0.001 |
Register [Fiction] * Level [B] | -1.59 | -3.19 – 0.00 | 0.050 |
Register [Informative] * Level [B] | -2.43 | -4.06 – -0.80 | 0.003 |
Register [Instructional] * Level [B] | -2.49 | -3.67 – -1.30 | <0.001 |
Register [Personal] * Level [B] | -0.11 | -2.46 – 2.24 | 0.928 |
Register [Fiction] * Level [C] | -1.82 | -3.42 – -0.22 | 0.026 |
Register [Informative] * Level [C] | -2.89 | -4.44 – -1.33 | <0.001 |
Register [Instructional] * Level [C] | -3.94 | -5.12 – -2.76 | <0.001 |
Register [Personal] * Level [C] | -0.32 | -2.71 – 2.07 | 0.793 |
Register [Fiction] * Level [D] | -1.21 | -2.76 – 0.35 | 0.128 |
Register [Informative] * Level [D] | -2.13 | -3.67 – -0.59 | 0.007 |
Register [Instructional] * Level [D] | -3.59 | -4.77 – -2.40 | <0.001 |
Register [Personal] * Level [D] | 2.76 | 0.27 – 5.26 | 0.030 |
Register [Fiction] * Level [E] | -2.20 | -3.81 – -0.59 | 0.007 |
Register [Informative] * Level [E] | -2.39 | -4.02 – -0.77 | 0.004 |
Register [Instructional] * Level [E] | -2.85 | -4.14 – -1.56 | <0.001 |
Register [Personal] * Level [E] | -0.12 | -2.63 – 2.38 | 0.923 |
Random Effects | |||
σ2 | 10.18 | ||
τ00 Series | 0.59 | ||
ICC | 0.06 | ||
N Series | 9 | ||
Observations | 1911 | ||
Marginal R2 / Conditional R2 | 0.213 / 0.256 |
# check distribution of residuals
library(predictmeans)
residplot(md_final4)
# We can access the estimated deviation between each series average Dim4 and the overall average:
ranef(md_final4)
## $Series
## (Intercept)
## Access -0.51443745
## Achievers 0.51979262
## EIM 0.02697037
## GreenLine -0.62892523
## HT -1.29336978
## JTT -0.06114683
## NGL -0.11547528
## POC 1.29938009
## Solutions 0.76721149
##
## with conditional variances for "Series"
TxBdim2_nopoetry[, "predicted"] <- predict(md_final4)
p <- ggplot(TxBdim2_nopoetry, aes(x = Level, y = Dim4)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
facet_grid(rows = vars(Series), cols = vars(Register)) +
geom_point(aes(y = predicted), shape = "triangle filled", fill = "red")+
labs(y = "Dimension 4 (Biber 1988)", x = "Textbook Level")
top_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Register") +
theme_void()
right_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Series", angle = -90) +
theme_void()
blank_panel <- ggplot() +
theme_void()
grid.arrange(
top_label, blank_panel, p, right_label,
nrow = 2, ncol = 2,
widths = c(30, 1), heights = c(1, 30)
)
# Save plot using Rstudio export function (dimensions: 600 to 900 work well)
Register_results4 <- emmeans(md_final4, "Register")
## NOTE: Results may be misleading due to involvement in interactions
summary(Register_results4)
## Register emmean SE df lower.CL upper.CL
## Conversation -1.366 0.312 15.1 -2.03 -0.70
## Fiction -1.724 0.344 22.8 -2.44 -1.01
## Informative -2.350 0.333 20.0 -3.04 -1.66
## Instructional -2.192 0.304 13.6 -2.85 -1.54
## Personal -0.439 0.445 68.1 -1.33 0.45
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
comparisons4 <- pairs(Register_results4, adjust = "tukey")
comparisons4
## contrast estimate SE df t.ratio p.value
## Conversation - Fiction 0.358 0.251 1936 1.430 0.6085
## Conversation - Informative 0.985 0.238 1935 4.146 0.0003
## Conversation - Instructional 0.827 0.196 1935 4.228 0.0002
## Conversation - Personal -0.927 0.379 1931 -2.447 0.1035
## Fiction - Informative 0.626 0.280 1936 2.237 0.1666
## Fiction - Instructional 0.468 0.242 1936 1.936 0.2983
## Fiction - Personal -1.285 0.403 1931 -3.187 0.0127
## Informative - Instructional -0.158 0.225 1929 -0.703 0.9558
## Informative - Personal -1.912 0.395 1928 -4.838 <.0001
## Instructional - Personal -1.754 0.371 1928 -4.722 <.0001
##
## Results are averaged over the levels of: Level
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 5 estimates
# Visualise effects
visreg(md_final4, xvar = "Level", by="Register", type = "conditional", line=list(col="darkred"), xlab = "Textbook Level", ylab = "Dimension 4 (Biber 1988)")
# Or using a ggplot2 approach
ggplot(TxBdim_nopoetry, aes(x = Level, y = Dim4, colour = Register)) +
geom_point(position = position_jitter(width = 0.27), size = 2, alpha = 0.8)+
geom_boxplot(aes(x = Level, y = Dim4),
outlier.shape = NA, alpha = 0.3, width = .6, colour = "BLACK") +
scale_colour_manual(values = colours[c(1,2,6,4,5)])+
scale_fill_manual(values = colours[c(1,2,6,4,5)])+
scale_y_continuous(limits=c(-10,15))+ # Removes two outliers
theme_minimal() +
theme(legend.position = "bottom", legend.title.align = 0.5, legend.margin=margin(0,0,0,0))+
ylab('Dimension 4 (Biber 1988)')
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
## Warning: Removed 2 rows containing missing values (geom_point).
#ggsave(here("plots", "Dim4_boxplot_levels.svg"), width = 7, height = 9)
# Z-scores
dim4zscores <- TxBzscores %>%
select(Filename, Level, To_infinitives, Pred_modals, Suasive_verbs, if_unless, Necessity_modals, Split_auxiliaries) %>%
group_by(Level) %>%
summarise_if(is.numeric, mean, na.rm = TRUE) %>%
print.data.frame
## Level To_infinitives Pred_modals Suasive_verbs if_unless Necessity_modals
## 1 A -0.93985088 -0.78691123 0.1541263 -0.77716351 -0.4392207
## 2 B -0.06722843 -0.22506983 0.2294970 -0.34661546 -0.1909284
## 3 C 0.26932696 0.14349401 0.2810493 0.16012488 -0.2997090
## 4 D 0.35551982 0.08949912 0.2987740 0.09240969 -0.3655297
## 5 E 0.62622880 0.05079893 0.2649056 0.08877387 -0.3043565
## Split_auxiliaries
## 1 -1.959834
## 2 -1.722025
## 3 -1.450334
## 4 -1.233483
## 5 -1.249927
# Rainplots for all textbook registers on Dimension 5
ggplot(TxBdimensions,aes(x=Register,y=Dim5, fill = Register, colour = Register))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
geom_boxplot(position = position_nudge(x = .25), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 5 (Biber 1988)')+xlab('Textbook Registers')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 5: Abstract vs. Non-Abstract Information ")+
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -4, to = 10, by = 2))
#ggsave(here("plots", "TxB_Reg_Dim5.svg"), width = 10, height = 6)
# Mean Dim5 scores
TxBdimensions %>% group_by(Register) %>% summarise(mean = mean(Dim5), sd = sd(Dim5))
## # A tibble: 6 × 3
## Register mean sd
## <fct> <dbl> <dbl>
## 1 Conversation -2.20 1.75
## 2 Fiction -1.91 1.76
## 3 Informative -0.108 2.43
## 4 Instructional -2.75 1.29
## 5 Personal -1.98 1.86
## 6 Poetry -2.67 1.46
# Lots of texts reach the floor level:
TxBdimensions %>% filter(Dim5 < -3.915) %>% summarise(n = n())
## n
## 1 265
# Clear level effect for Informative texts:
TxBdimensions %>% filter(Register=="Informative") %>% group_by(Level) %>% summarise(mean = mean(Dim5), sd = sd(Dim5))
## # A tibble: 5 × 3
## Level mean sd
## <fct> <dbl> <dbl>
## 1 A -2.52 0.989
## 2 B -1.18 1.94
## 3 C 0.0835 2.39
## 4 D 0.459 2.28
## 5 E 0.680 2.54
# Floor effect might be due to low frequencies of the features on Dimension 5 in the beginner/pre-intermediate textbook:
TxBdimensions %>% filter(as.numeric(Level)>3) %>% group_by(Register) %>% summarise(mean = mean(Dim5), sd = sd(Dim5))
## # A tibble: 6 × 3
## Register mean sd
## <fct> <dbl> <dbl>
## 1 Conversation -1.42 2.02
## 2 Fiction -1.36 1.63
## 3 Informative 0.562 2.40
## 4 Instructional -2.39 1.32
## 5 Personal -1.50 1.58
## 6 Poetry -2.25 1.54
TxBdimensionsLevelsDE <- TxBdimensions %>% filter(as.numeric(Level)>3)
ggplot(TxBdimensionsLevelsDE,aes(x=Register,y=Dim5, fill = Register, colour = Register))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim5), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 5 (Biber 1988)')+xlab('Textbook Registers (Levels D and E only)')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 5: Abstract vs. Non-Abstract Information") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -4, to = 10, by = 2))
#ggsave(here("plots", "TxB_Reg_Dim5_LevelsD-E.svg"), width = 10, height = 6)
md_final5 <- lmer(Dim5 ~ (1|Series) + Register + Level + Level:Register, TxBdim_nopoetry, REML = FALSE) # no warnings
tab_model(md_final5, wrap.labels = 100)
Dim 5 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -3.48 | -3.87 – -3.09 | <0.001 |
Register [Fiction] | 0.12 | -0.49 – 0.72 | 0.709 |
Register [Informative] | 0.78 | 0.14 – 1.41 | 0.016 |
Register [Instructional] | -0.21 | -0.65 – 0.23 | 0.354 |
Register [Personal] | -0.17 | -1.08 – 0.75 | 0.717 |
Level [B] | 0.48 | 0.06 – 0.91 | 0.027 |
Level [C] | 1.53 | 1.10 – 1.95 | <0.001 |
Level [D] | 2.06 | 1.63 – 2.48 | <0.001 |
Level [E] | 1.85 | 1.37 – 2.33 | <0.001 |
Register [Fiction] * Level [B] | 0.56 | -0.22 – 1.35 | 0.159 |
Register [Informative] * Level [B] | 0.93 | 0.13 – 1.72 | 0.023 |
Register [Instructional] * Level [B] | 0.21 | -0.37 – 0.80 | 0.480 |
Register [Personal] * Level [B] | 0.67 | -0.49 – 1.83 | 0.256 |
Register [Fiction] * Level [C] | 0.26 | -0.53 – 1.05 | 0.514 |
Register [Informative] * Level [C] | 1.07 | 0.30 – 1.83 | 0.006 |
Register [Instructional] * Level [C] | -0.56 | -1.14 – 0.03 | 0.061 |
Register [Personal] * Level [C] | 1.06 | -0.12 – 2.24 | 0.078 |
Register [Fiction] * Level [D] | 0.38 | -0.39 – 1.14 | 0.333 |
Register [Informative] * Level [D] | 1.02 | 0.25 – 1.78 | 0.009 |
Register [Instructional] * Level [D] | -0.91 | -1.49 – -0.33 | 0.002 |
Register [Personal] * Level [D] | 0.07 | -1.16 – 1.30 | 0.915 |
Register [Fiction] * Level [E] | 0.03 | -0.77 – 0.82 | 0.949 |
Register [Informative] * Level [E] | 1.66 | 0.86 – 2.46 | <0.001 |
Register [Instructional] * Level [E] | -0.29 | -0.92 – 0.35 | 0.378 |
Register [Personal] * Level [E] | 0.53 | -0.71 – 1.76 | 0.403 |
Random Effects | |||
σ2 | 2.47 | ||
τ00 Series | 0.12 | ||
ICC | 0.05 | ||
N Series | 9 | ||
Observations | 1912 | ||
Marginal R2 / Conditional R2 | 0.358 / 0.387 |
# check distribution of residuals
residplot(md_final5) # Major issues!!
TxBdim_nopoetry %>% filter(Dim5==min(TxBdim_nopoetry$Dim5)) %>% nrow(.) # There are 257/1949 texts with the minimum Dim5 score. We obviously have a floor effect here.
## [1] 257
### Only looking at the upper level textbooks and excluding instructional language
UpperTxBDim <- TxBdim_nopoetry %>% filter(Level %in% c("C", "D", "E") & Register != "Instructional") %>% droplevels(.)
UpperTxBDim %>% filter(Dim5==-3.9201) # Reduces number of texts with the floor level to just 16
## Filename Level Dim1 Dim2 Dim3
## 1 Access_3_Narrative_0013.txt C -2.4361 3.8357 -8.2436
## 2 Access_3_Spoken_0001.txt C 12.8537 -5.6998 -0.7944
## 3 Access_3_Spoken_0013.txt C 5.9886 -3.1583 -0.0380
## 4 Access_5_Personal_0001.txt E 8.1586 -4.2561 0.6477
## 5 EIM_2_Informative_0003.txt C 2.9309 -0.2069 0.2607
## 6 EIM_2_Personal_0001.txt C 14.2851 -1.6148 -3.9124
## 7 EIM_2_Spoken_0005.txt C 25.1282 -4.8196 -3.2386
## 8 GreenLine_3_Narrative_0011.txt C 0.3915 5.1584 -3.6444
## 9 GreenLine_3_Spoken_0003.txt C 23.3761 -3.3375 0.5133
## 10 GreenLine_3_Spoken_0007.txt C 16.2062 -3.7157 -1.8924
## 11 JTT_3_Spoken_0002.txt D 31.1243 -2.5753 -1.1061
## 12 NGL_3_Narrative_0005.txt C 5.1243 6.3279 1.3942
## 13 NGL_4_Spoken_0004.txt D 13.0234 -3.3312 1.0554
## 14 NGL_4_Spoken_0010.txt D 18.7797 -2.9715 -2.0073
## 15 POC_3e_Spoken_0016.txt D 24.9732 -4.9363 -1.6696
## 16 Solutions_Intermediate_Informative_0018.txt C 4.4176 -6.4075 -2.3155
## Dim4 Dim5 Dim6 TextType Register Series
## 1 -3.2271 -3.9201 -2.4462 Situated reportage Fiction Access
## 2 -2.5996 -3.9201 -0.5986 Involved persuasion Conversation Access
## 3 -3.8504 -3.9201 -2.5627 Involved persuasion Conversation Access
## 4 -5.1964 -3.9201 -2.7798 Involved persuasion Personal Access
## 5 2.1652 -3.9201 1.5124 Involved persuasion Informative EIM
## 6 0.4186 -3.9201 -2.5070 Involved persuasion Personal EIM
## 7 5.6688 -3.9201 -2.3547 Informational interaction Conversation EIM
## 8 -5.9071 -3.9201 -1.8820 Imaginative narrative Fiction GreenLine
## 9 0.2310 -3.9201 -1.9659 Informational interaction Conversation GreenLine
## 10 -4.0050 -3.9201 2.2155 Involved persuasion Conversation GreenLine
## 11 -1.0901 -3.9201 -1.9952 Informational interaction Conversation JTT
## 12 1.8832 -3.9201 -1.3817 Imaginative narrative Fiction NGL
## 13 -3.2447 -3.9201 -0.1897 Involved persuasion Conversation NGL
## 14 -5.1905 -3.9201 -1.3047 Informational interaction Conversation NGL
## 15 -1.4393 -3.9201 -1.8179 Informational interaction Conversation POC
## 16 1.4029 -3.9201 -0.0561 Involved persuasion Informative Solutions
## Country predicted
## 1 Germany -1.41151036
## 2 Germany -1.11244256
## 3 Germany -1.11244256
## 4 Germany -0.80723990
## 5 Spain 2.50229258
## 6 Spain -2.21681993
## 7 Spain -1.61309777
## 8 Germany -1.53117343
## 9 Germany -1.23210563
## 10 Germany -1.23210563
## 11 France 2.03578654
## 12 Germany -0.98611074
## 13 Germany 0.07837407
## 14 Germany 0.07837407
## 15 France 1.67346609
## 16 Spain 2.30890799
md_final5_Upper <- lmer(Dim5 ~ (1|Series) + Register + Level + Level:Register, UpperTxBDim, REML = FALSE) # no warnings
tab_model(md_final5_Upper, wrap.labels = 100) # Hardly explains anything and is therefore really not worth the trouble
Dim 5 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -2.07 | -2.58 – -1.55 | <0.001 |
Register [Fiction] | 0.57 | -0.05 – 1.20 | 0.071 |
Register [Informative] | 1.78 | 1.25 – 2.31 | <0.001 |
Register [Personal] | 1.02 | 0.12 – 1.92 | 0.026 |
Level [D] | 0.51 | 0.03 – 0.99 | 0.036 |
Level [E] | 0.48 | -0.09 – 1.04 | 0.096 |
Register [Fiction] * Level [D] | 0.13 | -0.70 – 0.97 | 0.752 |
Register [Informative] * Level [D] | 0.05 | -0.68 – 0.78 | 0.886 |
Register [Personal] * Level [D] | -0.96 | -2.29 – 0.38 | 0.160 |
Register [Fiction] * Level [E] | -0.39 | -1.26 – 0.48 | 0.375 |
Register [Informative] * Level [E] | 0.67 | -0.12 – 1.46 | 0.095 |
Register [Personal] * Level [E] | -0.62 | -1.97 – 0.72 | 0.363 |
Random Effects | |||
σ2 | 3.57 | ||
τ00 Series | 0.34 | ||
ICC | 0.09 | ||
N Series | 9 | ||
Observations | 833 | ||
Marginal R2 / Conditional R2 | 0.184 / 0.255 |
# check distribution of residuals
library(predictmeans)
residplot(md_final5_Upper)
###
UpperTxBDim[, "predicted"] <- predict(md_final5_Upper)
p <- ggplot(UpperTxBDim, aes(x = Level, y = Dim5)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
facet_grid(rows = vars(Series), cols = vars(Register)) +
geom_point(aes(y = predicted), shape = "triangle filled", fill = "red")+
labs(y = "Dimension 5 (Biber 1988)", x = "Textbook Level")
top_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Register") +
theme_void()
right_label <- ggplot() +
annotate("text", x = 0, y = 0, label = "Textbook Series", angle = -90) +
theme_void()
blank_panel <- ggplot() +
theme_void()
grid.arrange(
top_label, blank_panel, p, right_label,
nrow = 2, ncol = 2,
widths = c(30, 1), heights = c(1, 30)
)
# Rainplots for all textbook registers on Dimension 6
ggplot(TxBdimensions,aes(x=Register,y=Dim6, fill = Register, colour = Register))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim6), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 6 (Biber 1988)')+xlab('Textbook Registers')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
#ggtitle("Dimension 6: On-Line Informational Elaboration") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -4, to = 10, by = 2))
#ggsave(here("plots", "TxB_Reg_Dim6.svg"), width = 10, height = 6)
TxBdimensions %>% filter(Dim6 > 5) # Two clear outliers
## Filename Level Dim1 Dim2 Dim3 Dim4
## 1 Access_2_Spoken_0016.txt B 7.5089 -1.3987 -1.1996 -1.9249
## 2 Solutions_Intermediate_Poetry_0001.txt C 24.7457 -4.8622 1.4280 7.8919
## Dim5 Dim6 TextType Register Series Country
## 1 -3.5864 5.2576 Involved persuasion Conversation Access Germany
## 2 -3.1268 6.7785 Informational interaction Poetry Solutions Spain
TxBdimensions %>% group_by(Register) %>% summarise(mean = mean(Dim6))
## # A tibble: 6 × 2
## Register mean
## <fct> <dbl>
## 1 Conversation -1.48
## 2 Fiction -1.68
## 3 Informative -1.45
## 4 Instructional -1.75
## 5 Personal -1.76
## 6 Poetry -1.58
summary(TxBdimensions$Dim6)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.495 -2.451 -1.781 -1.609 -0.996 6.779
# Floor level:
TxBdimensions %>% filter(Dim6 < -3.494) %>% summarise(n = n()) # 66
## n
## 1 66
md_final6 <- lmer(Dim6 ~ (1|Series) + Register + Level + Level:Register, TxBdim_nopoetry, REML = FALSE) # no warnings
tab_model(md_final6, wrap.labels = 100)
Dim 6 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -2.38 | -2.63 – -2.13 | <0.001 |
Register [Fiction] | 0.21 | -0.21 – 0.63 | 0.330 |
Register [Informative] | 0.16 | -0.28 – 0.60 | 0.468 |
Register [Instructional] | 0.16 | -0.15 – 0.47 | 0.306 |
Register [Personal] | -0.24 | -0.88 – 0.40 | 0.459 |
Level [B] | 0.64 | 0.35 – 0.94 | <0.001 |
Level [C] | 0.78 | 0.48 – 1.07 | <0.001 |
Level [D] | 1.31 | 1.01 – 1.61 | <0.001 |
Level [E] | 1.61 | 1.27 – 1.94 | <0.001 |
Register [Fiction] * Level [B] | -0.45 | -0.99 – 0.10 | 0.109 |
Register [Informative] * Level [B] | -0.22 | -0.78 – 0.34 | 0.438 |
Register [Instructional] * Level [B] | -0.24 | -0.65 – 0.17 | 0.244 |
Register [Personal] * Level [B] | 0.01 | -0.80 – 0.82 | 0.979 |
Register [Fiction] * Level [C] | -0.02 | -0.57 – 0.53 | 0.930 |
Register [Informative] * Level [C] | 0.09 | -0.44 – 0.62 | 0.739 |
Register [Instructional] * Level [C] | -0.24 | -0.64 – 0.17 | 0.253 |
Register [Personal] * Level [C] | 0.10 | -0.72 – 0.93 | 0.802 |
Register [Fiction] * Level [D] | -0.69 | -1.22 – -0.16 | 0.011 |
Register [Informative] * Level [D] | -0.28 | -0.81 – 0.25 | 0.300 |
Register [Instructional] * Level [D] | -0.81 | -1.22 – -0.40 | <0.001 |
Register [Personal] * Level [D] | -0.28 | -1.14 – 0.57 | 0.515 |
Register [Fiction] * Level [E] | -0.97 | -1.52 – -0.41 | 0.001 |
Register [Informative] * Level [E] | -0.79 | -1.34 – -0.23 | 0.006 |
Register [Instructional] * Level [E] | -0.87 | -1.31 – -0.42 | <0.001 |
Register [Personal] * Level [E] | 0.03 | -0.83 – 0.89 | 0.946 |
Random Effects | |||
σ2 | 1.20 | ||
τ00 Series | 0.03 | ||
ICC | 0.02 | ||
N Series | 9 | ||
Observations | 1912 | ||
Marginal R2 / Conditional R2 | 0.106 / 0.127 |
# check distribution of residuals
residplot(md_final6) # Not looking terribly good here, either!
ggplot(TxBdim_nopoetry, aes(x = Level, y = Dim6, facet = Register)) +
geom_point(position = position_jitter(width = .15), size = .25, alpha = 0.7)+
geom_boxplot(aes(x = Level, y = Dim6, fill = Register),
outlier.shape = NA, alpha = 0.9, width = .15) +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
scale_y_continuous(limits=c(-3.5,4))+
facet_grid(cols = vars(Register)) +
theme_minimal()
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing missing values (geom_point).
ggplot(TxBdim_nopoetry, aes(x = Level, y = Dim6, colour = Register)) +
geom_point(position = position_jitter(width = 0.3), size = 2, alpha = 0.8)+
geom_boxplot(aes(x = Level, y = Dim6),
outlier.shape = NA, alpha = 0.3, width = .6, colour = "BLACK") +
scale_colour_manual(values = colours[c(1,2,6,4,5)])+
scale_fill_manual(values = colours[c(1,2,6,4,5)])+
scale_y_continuous(limits=c(-3.5,3.9), breaks = c(-3,-2,-1,0,1,2,3,4))+ # Removes the outlier in Conversation (discussed in Diss. chapter)
theme_minimal() +
theme(legend.position = "bottom", legend.title.align = 0.5, legend.margin=margin(0,0,0,0))+
ylab('Dimension 6 (Biber 1988)')
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
## Warning: Removed 1 rows containing missing values (geom_point).
#ggsave(here("plots", "Dim6_boxplot_levels.svg"), width = 7, height = 9)
visreg(md_final6, xvar = "Level", by="Register", type = "conditional", line=list(col="darkred"), xlab = "Textbook Level", ylab = "Biber's Dimension 6")
# Model with upper levels only
TxBdim_nopoetry %>% filter(Dim6==min(TxBdim_nopoetry$Dim6)) %>% nrow(.) # There are 60/1949 texts with the minimum Dim6 score. We obviously have a floor effect here.
## [1] 60
minDim6 <- min(TxBdim_nopoetry[, "Dim6"])
UpperTxBDim <- TxBdim_nopoetry %>% filter(Level %in% c("C", "D", "E") & Register != "Instructional") %>% droplevels(.)
UpperTxBDim %>% filter(Dim6==min(TxBdim_nopoetry$Dim6)) %>% nrow(.) # Now only 20/1949
## [1] 20
md_final6_Upper <- update(md_final6, data = UpperTxBDim)
tab_model(md_final6_Upper, wrap.labels = 100)
Dim 6 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -1.67 | -1.98 – -1.36 | <0.001 |
Register [Fiction] | 0.39 | -0.01 – 0.78 | 0.055 |
Register [Informative] | 0.17 | -0.16 – 0.51 | 0.308 |
Register [Personal] | -0.05 | -0.62 – 0.53 | 0.876 |
Level [D] | 0.52 | 0.21 – 0.82 | 0.001 |
Level [E] | 0.94 | 0.58 – 1.29 | <0.001 |
Register [Fiction] * Level [D] | -0.67 | -1.20 – -0.14 | 0.013 |
Register [Informative] * Level [D] | -0.27 | -0.74 – 0.19 | 0.248 |
Register [Personal] * Level [D] | -0.35 | -1.20 – 0.50 | 0.416 |
Register [Fiction] * Level [E] | -1.10 | -1.65 – -0.54 | <0.001 |
Register [Informative] * Level [E] | -0.82 | -1.32 – -0.32 | 0.001 |
Register [Personal] * Level [E] | -0.14 | -0.99 – 0.71 | 0.747 |
Random Effects | |||
σ2 | 1.44 | ||
τ00 Series | 0.11 | ||
ICC | 0.07 | ||
N Series | 9 | ||
Observations | 833 | ||
Marginal R2 / Conditional R2 | 0.042 / 0.112 |
residplot(md_final6_Upper) # Not ideal but better
visreg::visreg(md_final6_Upper, xvar = "Level", by="Register", type = "conditional", line=list(col="darkred"), xlab = "Textbook Level", ylab = "Dimension 6 (Biber 1988)")
# Spoken BNC2014 no mark-up (Jack & Jill version)
# Z-scores of individual features
BNCzscores <- read.delim(here("data", "SpokenBNC2014full_zscores.tsv"), header = TRUE)
BNCzscores <- BNCzscores %>% filter(Filename!=".DS_Store" & Filename!="CORPUS") # Remove this rows
colnames(BNCzscores)
## [1] "Filename" "AMP" "ANDC" "AWL" "CAUS" "CONC"
## [7] "COND" "CONJ" "DEMO" "DEMP" "DPAR" "DWNT"
## [13] "EMPH" "EX" "FPP1" "GER" "HDG" "INPR"
## [19] "JJ" "NEMD" "NN" "NOMZ" "OSUB" "PHC"
## [25] "PIN" "PIT" "PLACE" "POMD" "PRED" "PRMD"
## [31] "RB" "SPP2" "SYNE" "THAC" "THVC" "TIME"
## [37] "TO" "TOBJ" "TPP3" "TSUB" "TTR" "VBD"
## [43] "VPRT" "XX0" "X.BEMA." "X.BYPA." "X.CONT." "X.PASS."
## [49] "X.PASTP." "X.PEAS." "X.PIRE." "X.PRESP." "X.PRIV." "X.PROD."
## [55] "X.PUBV." "X.SERE." "X.SMP." "X.SPAU." "X.SPIN." "X.STPR."
## [61] "X.SUAV." "X.THATD." "X.WHCL." "X.WHOBJ." "X.WHQU." "X.WHSUB."
## [67] "X.WZPAST." "X.WZPRES." "Underused" "Overused"
MAT_features <- read.csv(here("metadata", "MAT_features_zscores_ref.csv"), header = F)
MAT_features <- MAT_features$V3 # Feature names without any spaces or hythens
colnames(BNCzscores) <- MAT_features
colnames(BNCzscores)
## [1] "Filename" "Amplifiers"
## [3] "Ind_clause_coord" "AWL"
## [5] "because" "Coord_conj"
## [7] "if_unless" "although_though"
## [9] "Demonstratives" "Dem_pronouns"
## [11] "Discourse_particles" "Downtoners"
## [13] "Emphatics" "Existential_there"
## [15] "FPP1" "Gerunds"
## [17] "Hedges" "Ind_pronouns"
## [19] "Attr_Adj" "Necessity_modals"
## [21] "Nouns" "Nominalizations"
## [23] "Adv_sub" "Phrasal_coord"
## [25] "Prepositions" "it"
## [27] "Place_adv" "Poss_modals"
## [29] "Pred_adj" "Pred_modals"
## [31] "Adverbs" "SPP2"
## [33] "Syn_negation" "That_adj_comp"
## [35] "That_verb_comp" "Time_adv"
## [37] "To_infinitives" "That_rel_clause_obj"
## [39] "TPP3" "That_rel_clause_subj"
## [41] "TTR" "Past_tense"
## [43] "Present_tense" "Analytic_negation"
## [45] "BE_main_verb" "By_passives"
## [47] "Contractions" "Agentless_passives"
## [49] "Past_participial_clauses" "Perfect_aspect"
## [51] "Pied_piping_relative_clauses" "Present_part_clauses"
## [53] "Private_verbs" "Pro_verb_DO"
## [55] "Public_verbs" "Sentence_relatives"
## [57] "seem_appear" "Split_auxiliaries"
## [59] "Split_infinitives" "Stranded_prepositions"
## [61] "Suasive_verbs" "That_deletion"
## [63] "WH_clauses" "WH_rel_clauses_obj"
## [65] "Direct_WH_questions" "WH_rel_clauses_subj"
## [67] "Past_part_WHIZ_del_rel" "Present_part_WHIZ_del_rel"
## [69] "Underused" "Overused"
# Dimensions Biber (1988)
BNCdimensions <- read.delim(here("data", "SpokenBNC2014full_dims.tsv"), header = TRUE)
#View(BNCdimensions)
glimpse(BNCdimensions)
## Rows: 1,253
## Columns: 8
## $ Filename <chr> "SFYX.txt", "SVH7.txt", "S75W.txt", "SH63.txt", "SAZ8.txt", "…
## $ Dim1 <dbl> 22.1993, 23.4792, 33.6168, 30.9853, 23.9637, 28.6082, 20.9903…
## $ Dim2 <dbl> -1.9363, -2.9455, -1.6510, -0.2400, -3.1933, -0.6629, -3.1299…
## $ Dim3 <dbl> -0.7729, -0.8446, -2.5404, -3.0247, 0.5859, -3.1513, 0.4093, …
## $ Dim4 <dbl> -2.0041, 0.3389, -0.1011, -1.9232, 4.4512, -0.2231, 0.5990, -…
## $ Dim5 <dbl> -0.8758, -1.0732, -2.5485, -3.2441, -1.9479, -1.4352, -2.2731…
## $ Dim6 <dbl> -0.6297, 0.4310, -1.0667, -0.4676, -0.2071, -0.3209, 2.0316, …
## $ TextType <chr> "Informational interaction", "Informational interaction", "In…
head(BNCdimensions)
## Filename Dim1 Dim2 Dim3 Dim4 Dim5 Dim6
## 1 SFYX.txt 22.1993 -1.9363 -0.7729 -2.0041 -0.8758 -0.6297
## 2 SVH7.txt 23.4792 -2.9455 -0.8446 0.3389 -1.0732 0.4310
## 3 S75W.txt 33.6168 -1.6510 -2.5404 -0.1011 -2.5485 -1.0667
## 4 SH63.txt 30.9853 -0.2400 -3.0247 -1.9232 -3.2441 -0.4676
## 5 SAZ8.txt 23.9637 -3.1933 0.5859 4.4512 -1.9479 -0.2071
## 6 SPG4.txt 28.6082 -0.6629 -3.1513 -0.2231 -1.4352 -0.3209
## TextType
## 1 Informational interaction
## 2 Informational interaction
## 3 Informational interaction
## 4 Informational interaction
## 5 Informational interaction
## 6 Informational interaction
BNCdimensions <- BNCdimensions %>% filter(Filename!="CORPUS") %>% filter(Filename!=".DS_Store") # Remove mean values output by the MAT + .DS_Store file due to working with the MAT on a MAC
# Adding metadata variables for future comparisons with TEC data
BNCdimensions$Series <- "Spoken BNC2014"
BNCdimensions$Level <- "Spoken BNC2014"
BNCdimensions$Country <- "Spoken BNC2014"
BNCdimensions$Register <- "Spoken BNC2014"
summary(BNCdimensions$Dim1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.314 23.492 25.973 26.021 28.609 40.802
# Quick plot of distribution of Dim1 values:
boxplot(BNCdimensions$Dim1)
# Dimensions Biber (1988)
# Three datasets need to be uploaded because the files were so large and had to be processed by the MAT in three batches:
YFdimensionsa <- read.delim(here("data", "YF5000a_dims.tsv"), header = TRUE)
YFdimensionsb <- read.delim(here("data", "YF5000b_dims.tsv"), header = TRUE)
YFdimensionsc <- read.delim(here("data","YF5000c_dims.tsv"), header = TRUE)
# Merge the three datasets
YFdimensions <- rbind(YFdimensionsa, YFdimensionsb, YFdimensionsc)
nrow(YFdimensions)
## [1] 1194
YFdimensions <- YFdimensions %>% filter(Filename!="CORPUS" & Filename!=".DS_Store") # Remove mean values file
# Add metadata variables for comparison with TEC data
YFdimensions$Series <- "Youth Fiction"
YFdimensions$Level <- "Youth Fiction"
YFdimensions$Country <- "Youth Fiction"
YFdimensions$Register <- "Youth Fiction"
# Remove individual datasets no longer needed from the R environment
rm(YFdimensionsa, YFdimensionsb, YFdimensionsc)
# Check distribution of Dim scores
boxplot(YFdimensions$Dim1)
boxplot(YFdimensions$Dim2)
# Z-scores of individual features
YFzscoresa <- read.delim(here("data", "YF5000a_zscores.tsv"), header = TRUE)
YFzscoresb <- read.delim(here("data", "YF5000b_zscores.tsv"), header = TRUE)
YFzscoresc <- read.delim(here("data", "YF5000c_zscores.tsv"), header = TRUE)
YFzscores <- rbind(YFzscoresa, YFzscoresb, YFzscoresc)
YFzscores <- YFzscores %>% filter(Filename!="CORPUS") # Remove mean values rows
colnames(YFzscores)
## [1] "Filename" "AMP" "ANDC" "AWL" "CAUS" "CONC"
## [7] "COND" "CONJ" "DEMO" "DEMP" "DPAR" "DWNT"
## [13] "EMPH" "EX" "FPP1" "GER" "HDG" "INPR"
## [19] "JJ" "NEMD" "NN" "NOMZ" "OSUB" "PHC"
## [25] "PIN" "PIT" "PLACE" "POMD" "PRED" "PRMD"
## [31] "RB" "SPP2" "SYNE" "THAC" "THVC" "TIME"
## [37] "TO" "TOBJ" "TPP3" "TSUB" "TTR" "VBD"
## [43] "VPRT" "XX0" "X.BEMA." "X.BYPA." "X.CONT." "X.PASS."
## [49] "X.PASTP." "X.PEAS." "X.PIRE." "X.PRESP." "X.PRIV." "X.PROD."
## [55] "X.PUBV." "X.SERE." "X.SMP." "X.SPAU." "X.SPIN." "X.STPR."
## [61] "X.SUAV." "X.THATD." "X.WHCL." "X.WHOBJ." "X.WHQU." "X.WHSUB."
## [67] "X.WZPAST." "X.WZPRES." "Underused" "Overused"
MAT_features <- read.csv(here("metadata", "MAT_features_zscores_ref.csv"), header = F)
MAT_features <- MAT_features$V3 # Feature names without any spaces or hyphens
colnames(YFzscores) <- MAT_features
colnames(YFzscores)
## [1] "Filename" "Amplifiers"
## [3] "Ind_clause_coord" "AWL"
## [5] "because" "Coord_conj"
## [7] "if_unless" "although_though"
## [9] "Demonstratives" "Dem_pronouns"
## [11] "Discourse_particles" "Downtoners"
## [13] "Emphatics" "Existential_there"
## [15] "FPP1" "Gerunds"
## [17] "Hedges" "Ind_pronouns"
## [19] "Attr_Adj" "Necessity_modals"
## [21] "Nouns" "Nominalizations"
## [23] "Adv_sub" "Phrasal_coord"
## [25] "Prepositions" "it"
## [27] "Place_adv" "Poss_modals"
## [29] "Pred_adj" "Pred_modals"
## [31] "Adverbs" "SPP2"
## [33] "Syn_negation" "That_adj_comp"
## [35] "That_verb_comp" "Time_adv"
## [37] "To_infinitives" "That_rel_clause_obj"
## [39] "TPP3" "That_rel_clause_subj"
## [41] "TTR" "Past_tense"
## [43] "Present_tense" "Analytic_negation"
## [45] "BE_main_verb" "By_passives"
## [47] "Contractions" "Agentless_passives"
## [49] "Past_participial_clauses" "Perfect_aspect"
## [51] "Pied_piping_relative_clauses" "Present_part_clauses"
## [53] "Private_verbs" "Pro_verb_DO"
## [55] "Public_verbs" "Sentence_relatives"
## [57] "seem_appear" "Split_auxiliaries"
## [59] "Split_infinitives" "Stranded_prepositions"
## [61] "Suasive_verbs" "That_deletion"
## [63] "WH_clauses" "WH_rel_clauses_obj"
## [65] "Direct_WH_questions" "WH_rel_clauses_subj"
## [67] "Past_part_WHIZ_del_rel" "Present_part_WHIZ_del_rel"
## [69] "Underused" "Overused"
# Counts
YFcountsa <- read.delim(here("data","YF5000a_counts.tsv"), header = TRUE)
YFcountsb <- read.delim(here("data","YF5000b_counts.tsv"), header = TRUE)
YFcountsc <- read.delim(here("data","YF5000c_counts.tsv"), header = TRUE)
YFcountsc %>% filter(NNP>0) %>% select(Filename, NNP) # Tagging error, should have been added to NN count
## Filename NNP
## 1 262_TheMagicBookmark_1.txt.txt 0.0236
YFcountsc <- YFcountsc %>% select(-NNP) # Removing parsing error
YFcounts <- rbind(YFcountsa, YFcountsb, YFcountsc)
rm(YFcountsa, YFcountsb, YFcountsc)
YFcounts <- YFcounts %>% filter(Filename != "CORPUS" & Filename!=".DS_Store")
nrow(YFcounts)
## [1] 1191
colnames(YFcounts)
## [1] "Filename" "Tokens" "AWL" "TTR" "X." "X..1"
## [7] "X.." "X..2" "X.LRB." "X.RRB." "." "X..3"
## [13] "AMP" "ANDC" "CAUS" "CC" "CD" "CONC"
## [19] "COND" "CONJ" "DEMO" "DEMP" "DPAR" "DT"
## [25] "DWNT" "EMPH" "EX" "FPP1" "FW" "GER"
## [31] "HDG" "IN" "INPR" "JJ" "LS" "NEMD"
## [37] "NN" "NOMZ" "OSUB" "PDT" "PHC" "PIN"
## [43] "PIT" "PLACE" "POMD" "POS" "PRED" "PRMD"
## [49] "PRP" "PRPS" "QUAN" "QUPR" "RB" "RP"
## [55] "SPP2" "SYM" "SYNE" "THAC" "THVC" "TIME"
## [61] "TO" "TOBJ" "TPP3" "TSUB" "UH" "VB"
## [67] "VBD" "VBG" "VBN" "VPRT" "WDT" "WP"
## [73] "WPS" "XX0" "X.BEMA." "X.BYPA." "X.CONT." "X.PASS."
## [79] "X.PASTP." "X.PEAS." "X.PIRE." "X.PRESP." "X.PRIV." "X.PROD."
## [85] "X.PUBV." "X.SERE." "X.SMP." "X.SPAU." "X.SPIN." "X.STPR."
## [91] "X.SUAV." "X.THATD." "X.WHCL." "X.WHOBJ." "X.WHQU." "X.WHSUB."
## [97] "X.WZPAST." "X.WZPRES." "X...1"
MAT_features <- read.csv(here("metadata" ,"MAT_features.csv"), header = F)
MAT_features <- MAT_features$V3 # Feature names without any spaces or hythens
MAT_features
## [1] "Filename" "Tokens"
## [3] "AWL" "TTR"
## [5] "Hashtag" "Dollar"
## [7] "Quotation" "Comma"
## [9] "LeftBracket" "RightBracket"
## [11] "Full_stop" "Colon"
## [13] "Amplifiers" "Ind_clause_coord"
## [15] "because" "Coord_conj"
## [17] "Card_numb" "although_though"
## [19] "if_unless" "Conjuncts"
## [21] "Demonstratives" "Dem_pronouns"
## [23] "Discourse_particles" "Determiners"
## [25] "Downtoners" "Emphatics"
## [27] "Existential_there" "FPP1"
## [29] "Foreign_words" "Gerunds"
## [31] "Hedges" "Prep_subord_conj"
## [33] "Ind_pronouns" "Attr_Adj"
## [35] "List_markers" "Necessity_modals"
## [37] "Nouns" "Plural_nouns"
## [39] "Nominalizations" "Adv_sub"
## [41] "Pre_determiners" "Phrasal_coord"
## [43] "Prepositions" "it"
## [45] "Place_adv" "Poss_modals"
## [47] "Poss_S" "Pred_adj"
## [49] "Pred_modals" "Personal_pronouns"
## [51] "Poss_pronouns" "Quantifiers"
## [53] "Quantifying_pronouns" "Adverbs"
## [55] "Particles" "SPP2"
## [57] "Symbols" "Syn_negation"
## [59] "That_adj_comp" "That_verb_comp"
## [61] "Time_adv" "To_infinitives"
## [63] "That_rel_clause_obj" "TPP3"
## [65] "That_rel_clause_subj" "Interjection"
## [67] "Verb_base_form" "Past_tense"
## [69] "Verb_ing_form" "Verb_past_par"
## [71] "Present_tense" "WH_determiner"
## [73] "WH_pronoun" "Poss_WH_pronoun"
## [75] "Analytic_negation" "BE_main_verb"
## [77] "By_passives" "Contractions"
## [79] "Agentless_passives" "Past_participial_clauses"
## [81] "Perfect_aspect" "Pied_piping_relative_clauses"
## [83] "Present_part_clauses" "Private_verbs"
## [85] "Pro_verb_DO" "Public_verbs"
## [87] "Sentence_relatives" "seem_appear"
## [89] "Split_auxiliaries" "Split_infinitives"
## [91] "Stranded_prepositions" "Suasive_verbs"
## [93] "That_deletion" "WH_clauses"
## [95] "WH_rel_clauses_obj" "Direct_WH_questions"
## [97] "WH_rel_clauses_subj" "Past_part_WHIZ_del_rel"
## [99] "Present_part_WHIZ_del_rel" "Quotation2"
## [101] "Register"
colnames(YFcounts) <- MAT_features[c(1:37, 39:100)] # Excluding the proper noun tag
colnames(YFcounts)
## [1] "Filename" "Tokens"
## [3] "AWL" "TTR"
## [5] "Hashtag" "Dollar"
## [7] "Quotation" "Comma"
## [9] "LeftBracket" "RightBracket"
## [11] "Full_stop" "Colon"
## [13] "Amplifiers" "Ind_clause_coord"
## [15] "because" "Coord_conj"
## [17] "Card_numb" "although_though"
## [19] "if_unless" "Conjuncts"
## [21] "Demonstratives" "Dem_pronouns"
## [23] "Discourse_particles" "Determiners"
## [25] "Downtoners" "Emphatics"
## [27] "Existential_there" "FPP1"
## [29] "Foreign_words" "Gerunds"
## [31] "Hedges" "Prep_subord_conj"
## [33] "Ind_pronouns" "Attr_Adj"
## [35] "List_markers" "Necessity_modals"
## [37] "Nouns" "Nominalizations"
## [39] "Adv_sub" "Pre_determiners"
## [41] "Phrasal_coord" "Prepositions"
## [43] "it" "Place_adv"
## [45] "Poss_modals" "Poss_S"
## [47] "Pred_adj" "Pred_modals"
## [49] "Personal_pronouns" "Poss_pronouns"
## [51] "Quantifiers" "Quantifying_pronouns"
## [53] "Adverbs" "Particles"
## [55] "SPP2" "Symbols"
## [57] "Syn_negation" "That_adj_comp"
## [59] "That_verb_comp" "Time_adv"
## [61] "To_infinitives" "That_rel_clause_obj"
## [63] "TPP3" "That_rel_clause_subj"
## [65] "Interjection" "Verb_base_form"
## [67] "Past_tense" "Verb_ing_form"
## [69] "Verb_past_par" "Present_tense"
## [71] "WH_determiner" "WH_pronoun"
## [73] "Poss_WH_pronoun" "Analytic_negation"
## [75] "BE_main_verb" "By_passives"
## [77] "Contractions" "Agentless_passives"
## [79] "Past_participial_clauses" "Perfect_aspect"
## [81] "Pied_piping_relative_clauses" "Present_part_clauses"
## [83] "Private_verbs" "Pro_verb_DO"
## [85] "Public_verbs" "Sentence_relatives"
## [87] "seem_appear" "Split_auxiliaries"
## [89] "Split_infinitives" "Stranded_prepositions"
## [91] "Suasive_verbs" "That_deletion"
## [93] "WH_clauses" "WH_rel_clauses_obj"
## [95] "Direct_WH_questions" "WH_rel_clauses_subj"
## [97] "Past_part_WHIZ_del_rel" "Present_part_WHIZ_del_rel"
## [99] "Quotation2"
# InfoTeen Dimensions
InfoTeendimensions <- read.delim(here("data", "InfoTeen_dims.tsv"), header = TRUE)
nrow(InfoTeendimensions)
## [1] 1416
InfoTeendimensions <- InfoTeendimensions %>% filter(Filename!="CORPUS" & Filename!=".DS_Store")
InfoTeendimensions$Series <- "Info Teens"
InfoTeendimensions$Level <- "Info Teens"
InfoTeendimensions$Country <- "Info Teens"
InfoTeendimensions$Register <- "Info Teens"
boxplot(InfoTeendimensions$Dim1)
Dimensions <- dplyr::bind_rows(TxBdimensions, BNCdimensions, InfoTeendimensions, YFdimensions, .id = "Corpus")
nrow(Dimensions)
## [1] 5805
head(Dimensions); tail(Dimensions)
## Corpus Filename Level Dim1 Dim2 Dim3 Dim4
## 1 1 Access_1_Informative_0001.txt A -7.3851 -4.1024 -0.9315 -6.6663
## 2 1 Access_1_Instructional_0001.txt A -4.9261 -2.4173 5.1347 -7.4853
## 3 1 Access_1_Instructional_0002.txt A -2.4381 -0.6398 4.7311 -5.6705
## 4 1 Access_1_Instructional_0003.txt A -0.1935 -3.3565 4.5138 -7.3240
## 5 1 Access_1_Instructional_0004.txt A -1.6453 -4.2051 4.6284 -7.3409
## 6 1 Access_1_Instructional_0005.txt A 4.4156 -3.2099 5.5911 -4.0795
## Dim5 Dim6 TextType Register Series Country
## 1 -3.4638 -2.9757 General narrative exposition Informative Access Germany
## 2 -3.9201 -2.1686 General narrative exposition Instructional Access Germany
## 3 -3.9201 -2.1922 General narrative exposition Instructional Access Germany
## 4 -3.9201 -1.0148 Involved persuasion Instructional Access Germany
## 5 -3.9201 -2.1161 General narrative exposition Instructional Access Germany
## 6 -3.9201 -2.5710 Involved persuasion Instructional Access Germany
## Corpus Filename
## 5800 4 283_Hartnett_Thursday_Child_2.txt.txt
## 5801 4 251_TheWolfWilderKatherineRundell_3.txt.txt
## 5802 4 292_Adams_Watership_down_3.txt.txt
## 5803 4 271_Boyce_Frank-Cottrell-The-Unforgotten-Coat_4.txt.txt
## 5804 4 277_Lewis_Alice_Wonderland_2.txt.txt
## 5805 4 221_GREEN2010GHOSANCE.enuk_3.txt.txt
## Level Dim1 Dim2 Dim3 Dim4 Dim5 Dim6
## 5800 Youth Fiction 11.5351 7.7083 -0.4732 1.0855 -1.5048 -1.1593
## 5801 Youth Fiction 1.6479 6.5320 -1.0364 -1.2427 -2.6515 -2.6888
## 5802 Youth Fiction 12.5234 3.5948 -1.3319 4.3015 -1.3665 -0.1931
## 5803 Youth Fiction 9.3920 3.9129 -1.9078 -0.2747 -0.9714 -1.2909
## 5804 Youth Fiction 14.6399 5.9620 -3.4998 0.6420 -1.1585 -0.4828
## 5805 Youth Fiction 7.9830 5.6020 -0.5985 0.0463 -2.3492 -1.5609
## TextType Register Series Country
## 5800 Imaginative narrative Youth Fiction Youth Fiction Youth Fiction
## 5801 Imaginative narrative Youth Fiction Youth Fiction Youth Fiction
## 5802 Imaginative narrative Youth Fiction Youth Fiction Youth Fiction
## 5803 Imaginative narrative Youth Fiction Youth Fiction Youth Fiction
## 5804 Imaginative narrative Youth Fiction Youth Fiction Youth Fiction
## 5805 Imaginative narrative Youth Fiction Youth Fiction Youth Fiction
#Convert all character vectors to factors
Dimensions[sapply(Dimensions, is.character)] <- lapply(Dimensions[sapply(Dimensions, is.character)], as.factor)
levels(Dimensions$Corpus)
## [1] "1" "2" "3" "4"
levels(Dimensions$Corpus) <- list(Textbook.English="1", Spoken.BNC2014="2", Informative.Teens="3", Youth.Fiction="4")
summary(Dimensions$Corpus)
## Textbook.English Spoken.BNC2014 Informative.Teens Youth.Fiction
## 1949 1251 1414 1191
summary(Dimensions$Series)
## Access Achievers EIM GreenLine HT
## 282 238 174 206 172
## Info Teens JTT NGL POC Solutions
## 1414 175 300 92 310
## Spoken BNC2014 Youth Fiction
## 1251 1191
# Re-order registers
levels(Dimensions$Register)
## [1] "Conversation" "Fiction" "Info Teens" "Informative"
## [5] "Instructional" "Personal" "Poetry" "Spoken BNC2014"
## [9] "Youth Fiction"
Dimensions$Register <- factor(Dimensions$Register, levels = c("Conversation", "Fiction", "Informative", "Instructional", "Personal", "Poetry", "Info Teens", "Spoken BNC2014", "Youth Fiction"))
#saveRDS(Dimensions, here("data", "Dimensions.rds"))
SpokenTxBzscores <- TxBzscores %>% filter(Register=="Conversation") %>% select(-Register)
SpokenZscores <- bind_rows("Textbook Conversation" = SpokenTxBzscores, "Spoken BNC2014" = BNCzscores, .id = "Corpus") # Ignore stupid warning in R 3.x
SpokenZscores <- SpokenZscores %>% mutate_if(is.character, as.factor)
glimpse(SpokenZscores)
## Rows: 1,780
## Columns: 74
## $ Corpus <fct> Textbook Conversation, Textbook Conversat…
## $ Filename <fct> Access_1_Spoken_0001.txt, Access_1_Spoken…
## $ Level <fct> A, A, A, A, A, A, A, A, A, A, A, A, A, A,…
## $ Amplifiers <dbl> -1.0385, -1.0385, -1.0385, 0.1450, -1.038…
## $ Ind_clause_coord <dbl> 1.3027, -0.4108, 1.4004, 0.9856, 1.5427, …
## $ AWL <dbl> -2.7016, -2.4668, -2.0012, -2.3692, -2.09…
## $ because <dbl> -0.6471, -0.6471, -0.6471, 0.2576, 0.2282…
## $ Coord_conj <dbl> -0.625, -0.625, -0.625, -0.625, -0.625, -…
## $ if_unless <dbl> -1.1364, -1.1364, -1.1364, -1.1364, -1.13…
## $ although_though <dbl> -0.7500, -0.7500, -0.7500, -0.7500, -0.75…
## $ Demonstratives <dbl> -2.3571, -1.1531, -2.3571, -1.9910, -2.35…
## $ Dem_pronouns <dbl> 2.4019, 1.1488, 0.0808, 0.3237, 0.9019, 0…
## $ Discourse_particles <dbl> 1.8157, 0.0278, 0.5626, 0.8161, 2.7130, 0…
## $ Downtoners <dbl> -1.2500, -1.2500, -0.4706, -1.2500, -1.25…
## $ Emphatics <dbl> -1.5000, -1.5000, -0.9062, -1.1338, -0.08…
## $ Existential_there <dbl> -0.6250, 5.0989, 0.1633, 3.0511, 1.2578, …
## $ FPP1 <dbl> 1.7593, 1.3797, 1.0599, 1.3746, 0.6683, 2…
## $ Gerunds <dbl> -1.2761, -0.8439, -0.2016, -1.0324, -0.27…
## $ Hedges <dbl> -0.4615, -0.4615, -0.4615, -0.4615, 1.827…
## $ Ind_pronouns <dbl> -0.7000, -0.7000, -0.7000, -0.7000, 0.788…
## $ Attr_Adj <dbl> -0.8265, -1.2786, -0.5758, -1.4284, -1.40…
## $ Necessity_modals <dbl> -1.0000, -1.0000, -1.0000, -1.0000, -1.00…
## $ Nouns <dbl> 3.8400, 3.7012, 4.8068, 6.0793, 2.9554, 2…
## $ Nominalizations <dbl> -1.1579, -0.9430, -1.2087, -1.3819, -1.17…
## $ Adv_sub <dbl> -0.9091, -0.9091, -0.9091, -0.9091, -0.90…
## $ Phrasal_coord <dbl> -0.4626, 4.3596, 1.9733, 1.0200, -1.2593,…
## $ Prepositions <dbl> -2.1491, -2.2102, -1.5032, -1.8670, -2.53…
## $ it <dbl> 1.2754, 0.3299, -0.5727, 0.0661, 0.8548, …
## $ Place_adv <dbl> -0.9118, -0.1682, 0.9218, -0.9118, -0.474…
## $ Poss_modals <dbl> -0.4283, 5.9283, 1.9054, 0.5406, 2.5946, …
## $ Pred_adj <dbl> 5.2231, 1.1096, 0.1108, 3.5177, -0.0908, …
## $ Pred_modals <dbl> -1.3333, -1.3333, -1.3333, 0.4981, -1.333…
## $ Adverbs <dbl> -2.3832, -1.8597, -2.1687, -2.0664, -1.44…
## $ SPP2 <dbl> 2.7889, 1.6645, 1.8125, 1.4008, 2.1941, 1…
## $ Syn_negation <dbl> -1.0625, -1.0625, -0.2831, 3.7450, -0.132…
## $ That_adj_comp <dbl> -0.5000, -0.5000, -0.5000, -0.5000, -0.50…
## $ That_verb_comp <dbl> -1.1379, -1.1379, -1.1379, -1.1379, -1.13…
## $ Time_adv <dbl> 0.6649, -0.4020, -1.1294, -1.0463, 1.0654…
## $ To_infinitives <dbl> -2.4688, -2.4350, -2.6607, -1.5618, -1.33…
## $ That_rel_clause_obj <dbl> -0.7273, -0.7273, -0.7273, -0.7273, -0.72…
## $ TPP3 <dbl> -1.0421, -0.8232, 0.2782, -0.9870, 0.5230…
## $ That_rel_clause_subj <dbl> -0.500, -0.500, -0.500, -0.500, -0.500, -…
## $ TTR <dbl> -3.5769, -2.8077, -2.6154, -2.8077, -3.04…
## $ Past_tense <dbl> -1.3191, -1.3191, -1.3191, -1.2685, -1.31…
## $ Present_tense <dbl> 1.7787, 1.0887, 0.3884, 0.7399, 0.9885, -…
## $ Analytic_negation <dbl> 0.8980, 1.0936, 1.4682, 0.6243, 1.5339, -…
## $ BE_main_verb <dbl> 5.3968, 1.5457, -0.3539, 0.0980, -0.0027,…
## $ By_passives <dbl> -0.6154, -0.6154, -0.6154, -0.6154, -0.61…
## $ Contractions <dbl> 3.4365, 1.5852, 1.1512, 1.7556, 1.3543, 0…
## $ Agentless_passives <dbl> -1.4545, -1.2630, -1.4545, -1.4545, -1.45…
## $ Past_participial_clauses <dbl> -0.2500, -0.2500, -0.2500, -0.2500, -0.25…
## $ Perfect_aspect <dbl> -1.6538, -1.6538, -1.6538, -1.6538, -1.65…
## $ Pied_piping_relative_clauses <dbl> -0.6364, -0.6364, -0.6364, -0.6364, -0.63…
## $ Present_part_clauses <dbl> -0.5882, -0.5882, -0.5882, -0.5882, -0.58…
## $ Private_verbs <dbl> -0.8003, -0.1505, -0.8915, -0.6953, -0.58…
## $ Pro_verb_DO <dbl> -0.5500, -0.4960, -0.1446, 0.4614, 1.6940…
## $ Public_verbs <dbl> -1.0276, -0.9578, -0.9641, -1.4259, -1.15…
## $ Sentence_relatives <dbl> -0.25, -0.25, -0.25, -0.25, -0.25, -0.25,…
## $ seem_appear <dbl> -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8,…
## $ Split_auxiliaries <dbl> -2.2000, -2.2000, -2.2000, -2.2000, -2.20…
## $ Split_infinitives <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ Stranded_prepositions <dbl> 0.8522, 0.1956, -0.2789, -0.7407, -0.1896…
## $ Suasive_verbs <dbl> -0.5887, -0.9355, -0.5332, -0.9355, -0.93…
## $ That_deletion <dbl> -0.7561, -0.4478, -0.4520, -0.7561, -0.39…
## $ WH_clauses <dbl> -0.600, -0.600, -0.600, -0.600, -0.600, 0…
## $ WH_rel_clauses_obj <dbl> -0.8235, -0.8235, -0.8235, -0.8235, -0.82…
## $ Direct_WH_questions <dbl> 3.2517, 20.7367, 1.7450, 7.3583, 2.1467, …
## $ WH_rel_clauses_subj <dbl> -1.050, -1.050, -1.050, -1.050, -1.050, -…
## $ Past_part_WHIZ_del_rel <dbl> -0.8065, -0.8065, -0.8065, -0.8065, -0.80…
## $ Present_part_WHIZ_del_rel <dbl> -0.8889, -0.8889, -0.8889, -0.0344, 0.764…
## $ Underused <fct> AWL DEMO PIN RB TO TTR [SPAU], AWL PIN TO…
## $ Overused <fct> DEMP NN PRED SPP2 [BEMA] [CONT] [WHQU], E…
## $ Series <fct> Access, Access, Access, Access, Access, A…
## $ Country <fct> Germany, Germany, Germany, Germany, Germa…
summary(SpokenZscores$Corpus)
## Spoken BNC2014 Textbook Conversation
## 1251 529
# This computes Dim 1 scores without the offending variables that reply on punctuation marks that are absent from the Spoken BNC2014:
SpokenNewDim1 <- SpokenZscores %>%
mutate(Dim1nopunct = Private_verbs + That_deletion + Contractions + Present_tense + SPP2 + Pro_verb_DO + Analytic_negation + Dem_pronouns + Emphatics + FPP1 + it + BE_main_verb + because + Ind_pronouns + Hedges + Amplifiers + Poss_modals + WH_clauses - Nouns - AWL - Prepositions - TTR - Attr_Adj) %>%
select(Filename, Corpus, Dim1nopunct)
SpokenNewDim1 %>%
group_by(Corpus) %>%
summarise(meanDim1 = mean(Dim1nopunct), sdDim1 = sd(Dim1nopunct))
## # A tibble: 2 × 3
## Corpus meanDim1 sdDim1
## <fct> <dbl> <dbl>
## 1 Spoken BNC2014 30.7 4.61
## 2 Textbook Conversation 14.8 8.09
wilcox.test(Dim1nopunct ~ Corpus, data = SpokenNewDim1, corect = TRUE, conf.int = TRUE)
##
## Wilcoxon rank sum test with continuity correction
##
## data: Dim1nopunct by Corpus
## W = 636194, p-value < 0.00000000000000022
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## 14.89054 16.23759
## sample estimates:
## difference in location
## 15.5619
DimensionsNewDim1 <- merge(Dimensions, SpokenNewDim1, by = "Filename", all = TRUE)
DimensionsNewDim1$Corpus <- DimensionsNewDim1$Corpus.x
DimensionsNewDim1 <- DimensionsNewDim1 %>%
mutate(Dim1nopunct =
case_when(is.na(Dim1nopunct) ~ Dim1,
TRUE ~ Dim1nopunct))
# Checking output:
DimensionsNewDim1 %>% slice_sample(n = 10) %>% select(Corpus, Register, Dim1, Dim1nopunct)
## Corpus Register Dim1 Dim1nopunct
## 1 Informative.Teens Info Teens -12.2440 -12.2440
## 2 Spoken.BNC2014 Spoken BNC2014 27.7635 29.7102
## 3 Textbook.English Instructional -6.1088 -6.1088
## 4 Youth.Fiction Youth Fiction 1.4239 1.4239
## 5 Spoken.BNC2014 Spoken BNC2014 22.8936 26.3682
## 6 Spoken.BNC2014 Spoken BNC2014 24.4378 27.3664
## 7 Youth.Fiction Youth Fiction 11.9382 11.9382
## 8 Textbook.English Fiction -1.2246 -1.2246
## 9 Informative.Teens Info Teens -14.7148 -14.7148
## 10 Informative.Teens Info Teens -21.8527 -21.8527
# Add Source variable for random effect variable in mixed effect models
DimensionsNewDim1 <- DimensionsNewDim1 %>% mutate(Source = case_when(
Corpus=="Youth.Fiction" ~ paste("Book", str_extract(Filename, "[0-9]{1,3}"), sep = ""),
Corpus=="Spoken.BNC2014" ~ "Spoken.BNC2014",
Corpus=="Textbook.English" ~ as.character(Series),
Corpus=="Informative.Teens" ~ str_extract(Filename, "BBC|Science_Tech"),
TRUE ~ "NA")) %>%
mutate(Source = case_when(
Corpus=="Informative.Teens" & is.na(Source) ~ str_remove(Filename, "_.*"),
TRUE ~ as.character(Source)))
DimensionsNewDim1$Source <- as.factor(DimensionsNewDim1$Source)
summary(DimensionsNewDim1$Source, 325)
## Access Achievers BBC Book1 Book10
## 282 238 100 4 4
## Book100 Book101 Book102 Book103 Book104
## 4 4 4 4 4
## Book105 Book106 Book107 Book108 Book109
## 4 4 4 4 4
## Book11 Book110 Book111 Book112 Book113
## 4 4 4 4 4
## Book114 Book115 Book116 Book117 Book118
## 4 4 4 4 4
## Book119 Book12 Book120 Book121 Book122
## 4 4 4 4 4
## Book123 Book124 Book125 Book126 Book127
## 4 4 4 4 4
## Book128 Book129 Book13 Book130 Book131
## 4 4 4 4 4
## Book132 Book133 Book134 Book135 Book136
## 4 4 4 4 4
## Book137 Book138 Book139 Book14 Book140
## 4 4 4 4 4
## Book141 Book142 Book143 Book144 Book145
## 4 4 4 4 4
## Book146 Book147 Book148 Book149 Book15
## 4 4 4 4 4
## Book150 Book151 Book152 Book153 Book154
## 4 4 4 4 4
## Book155 Book156 Book157 Book158 Book159
## 4 4 4 4 4
## Book16 Book160 Book161 Book162 Book163
## 4 4 4 4 4
## Book164 Book165 Book166 Book167 Book168
## 4 4 4 4 4
## Book169 Book17 Book170 Book171 Book172
## 4 4 4 4 4
## Book173 Book174 Book175 Book176 Book177
## 4 4 4 4 4
## Book178 Book179 Book18 Book180 Book181
## 4 4 4 4 4
## Book182 Book183 Book184 Book185 Book186
## 4 4 4 4 4
## Book187 Book188 Book189 Book19 Book190
## 4 4 4 4 4
## Book191 Book192 Book193 Book194 Book195
## 4 4 4 4 4
## Book196 Book197 Book198 Book199 Book2
## 4 4 4 4 4
## Book20 Book200 Book201 Book202 Book203
## 4 4 4 4 4
## Book204 Book205 Book206 Book207 Book208
## 4 4 4 4 4
## Book209 Book21 Book210 Book211 Book212
## 4 4 4 4 4
## Book213 Book214 Book215 Book216 Book217
## 4 4 4 4 4
## Book218 Book219 Book22 Book220 Book221
## 4 4 4 4 4
## Book222 Book223 Book224 Book225 Book226
## 4 4 4 4 4
## Book227 Book228 Book229 Book23 Book230
## 4 4 4 4 4
## Book231 Book232 Book233 Book234 Book235
## 4 4 4 4 4
## Book236 Book237 Book238 Book239 Book24
## 4 4 4 1 4
## Book240 Book241 Book242 Book243 Book244
## 4 4 4 4 4
## Book245 Book246 Book247 Book248 Book249
## 4 4 4 4 4
## Book25 Book250 Book251 Book252 Book253
## 4 4 4 4 4
## Book254 Book255 Book256 Book257 Book258
## 4 4 4 4 4
## Book259 Book26 Book260 Book261 Book262
## 4 4 4 4 1
## Book263 Book264 Book265 Book266 Book267
## 4 4 4 4 1
## Book268 Book269 Book27 Book270 Book271
## 4 4 4 4 4
## Book272 Book273 Book274 Book275 Book276
## 4 4 4 4 4
## Book277 Book278 Book279 Book28 Book280
## 4 4 4 4 4
## Book281 Book282 Book283 Book284 Book285
## 4 4 4 4 4
## Book286 Book287 Book288 Book289 Book29
## 4 4 4 4 4
## Book290 Book291 Book292 Book293 Book294
## 4 4 4 4 4
## Book295 Book296 Book297 Book298 Book299
## 4 4 4 4 4
## Book3 Book30 Book300 Book31 Book32
## 4 4 4 4 4
## Book33 Book34 Book35 Book36 Book37
## 4 4 4 4 4
## Book38 Book39 Book4 Book40 Book41
## 4 4 4 4 4
## Book42 Book43 Book44 Book45 Book46
## 4 4 4 4 4
## Book47 Book48 Book49 Book5 Book50
## 4 4 4 4 4
## Book51 Book52 Book53 Book54 Book55
## 4 4 4 4 4
## Book56 Book57 Book58 Book59 Book6
## 4 4 4 4 4
## Book60 Book61 Book62 Book63 Book64
## 4 4 4 4 4
## Book65 Book66 Book67 Book68 Book69
## 4 4 4 4 4
## Book7 Book70 Book71 Book72 Book73
## 4 4 4 4 4
## Book74 Book75 Book76 Book77 Book78
## 4 4 4 4 4
## Book79 Book8 Book80 Book81 Book82
## 4 4 4 4 4
## Book83 Book84 Book85 Book86 Book87
## 4 4 4 4 4
## Book88 Book89 Book9 Book90 Book91
## 4 4 4 4 4
## Book92 Book93 Book94 Book95 Book96
## 4 4 4 4 4
## Book97 Book98 Book99 Dogo Ducksters
## 4 4 4 100 100
## EIM Encyclopedia Factmonster GreenLine History
## 174 100 100 206 100
## HT JTT NGL POC Quatr
## 172 175 300 92 100
## Revision Science Science_Tech Solutions Spoken.BNC2014
## 100 100 100 310 1251
## Teen TeenVogue TweenTribute WhyFiles World
## 100 100 29 100 85
## Re-arranging data frame
recoding_corpus <- list(
Textbook.English = "Textbook",
Spoken.BNC2014 = "Reference",
Informative.Teens = "Reference",
Youth.Fiction = "Reference")
recoding_register <- list(
`Info Teens` = "Informative",
`Spoken BNC2014` = "Conversation",
`Youth Fiction` = "Fiction")
dimensions_ref <- DimensionsNewDim1 %>%
mutate(
Corpus = recode(Corpus, !!!recoding_corpus),
Register = recode(Register, !!!recoding_register)) %>%
filter(Register %in% c("Conversation", "Fiction", "Informative")) %>%
mutate(Register = factor(Register))
dimensions_ref %>% count(Corpus, Register) # Check wrangled table is correct
## Corpus Register n
## 1 Textbook Conversation 529
## 2 Textbook Fiction 285
## 3 Textbook Informative 363
## 4 Reference Conversation 1251
## 5 Reference Fiction 1191
## 6 Reference Informative 1414
## Check how many different observations there are in each random effect grouping
dimensions_ref %>%
count(Corpus, Register, Source) %>%
group_by(Corpus, Register) %>%
summarize(min_n = min(n), median_n = median(n), max_n = max(n), .groups = "drop")
## # A tibble: 6 × 5
## Corpus Register min_n median_n max_n
## <fct> <fct> <int> <dbl> <int>
## 1 Textbook Conversation 15 39 118
## 2 Textbook Fiction 3 28 67
## 3 Textbook Informative 12 35 79
## 4 Reference Conversation 1251 1251 1251
## 5 Reference Fiction 1 4 4
## 6 Reference Informative 29 100 100
## Distributions of the dimension scores in the different combinations of corpus type and register.
dimensions_ref %>%
pivot_longer(cols = starts_with("Dim"), names_to = "Dim", values_to = "Score") %>%
ggplot(aes(x = Register, y = Score, fill = Corpus)) +
geom_point(shape = "circle filled", position = position_jitterdodge()) +
facet_wrap(vars(Dim))
#saveRDS(dimensions_ref, here("data", "AdditiveMDAdimensions_ref.rds"))
Dimensions <- readRDS(here("data", "Dimensions.rds"))
dimensions_ref <- readRDS(here("data", "AdditiveMDAdimensions_ref.rds"))
# Colours used in Register Studies paper and in the open access plots on Zenodo:
colours <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
colours2 <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
colours <- c(colours, colours2[c(2:4)]) # Nine colours range
scales::show_col(colours)
# Colours as used in Register Studies paper (see also plot on Zenodo)
london <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
#scales::show_col(london)
classic <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
#scales::show_col(classic)
colours3Reg <- c(classic[2], london[6], classic[4], london[5], london[c(2,4)])
# Colours as used in PhD thesis
colours3Reg <- c("#BD241E", "#F9B921","#267226", "#A18A33", "#15274D", "#722672")
# Rainplots for all textbook registers and the three ref. corpora on Dimension 1 (not included in thesis)
ggplot(Dimensions,aes(x=Register,y=Dim1, fill = Register, colour = Register))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim1), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 1 (Biber 1988)')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
annotate(geom = "text", x = 8.3, y = -42, label = "Reference Corpora", size = 5) +
annotate(geom = "segment", x = 7, xend = 9.5, y = -39, yend = -39) +
annotate(geom = "text", x = 3.8, y = -42, label = "Textbook Corpus", size = 5) +
annotate(geom = "segment", x = 1, xend = 6.5, y = -39, yend = -39) +
#ggtitle("Dimension 1: Involved vs. Informational Discourse") +
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -45, to = 45, by = 5))
#ggsave(here("plots", "Dim1.svg"), width = 13, height = 8)
# Rainplots for all textbook registers and the three ref. corpora on Dimension 1
dimensions_ref <- readRDS(here("data", "AdditiveMDAdimensions_ref.rds"))
summary(dimensions_ref)
## Filename Corpus.x
## 1_BaumWizardOz_1.txt.txt : 1 Textbook.English :1177
## 1_BaumWizardOz_2.txt.txt : 1 Spoken.BNC2014 :1251
## 1_BaumWizardOz_3.txt.txt : 1 Informative.Teens:1414
## 1_BaumWizardOz_4.txt.txt : 1 Youth.Fiction :1191
## 10_Montgomery1923EmilyMoon_1.txt.txt: 1
## 10_Montgomery1923EmilyMoon_2.txt.txt: 1
## (Other) :5027
## Level Dim1 Dim2 Dim3
## Info Teens :1414 Min. :-33.259 Min. :-7.3784 Min. :-9.1267
## Spoken BNC2014:1251 1st Qu.: -8.149 1st Qu.:-2.8574 1st Qu.:-1.5764
## Youth Fiction :1191 Median : 5.164 Median :-1.1079 Median :-0.2053
## D : 285 Mean : 5.579 Mean :-0.1165 Mean : 0.7889
## C : 262 3rd Qu.: 21.191 3rd Qu.: 2.6976 3rd Qu.: 2.6426
## B : 235 Max. : 40.802 Max. :11.4408 Max. :32.1621
## (Other) : 395
## Dim4 Dim5 Dim6
## Min. :-9.2659 Min. :-3.9201 Min. :-3.4950
## 1st Qu.:-2.6768 1st Qu.:-2.1621 1st Qu.:-1.8910
## Median :-0.6504 Median :-1.3545 Median :-1.0764
## Mean :-0.7798 Mean :-0.7031 Mean :-0.9905
## 3rd Qu.: 1.0995 3rd Qu.: 0.0631 3rd Qu.:-0.1803
## Max. :25.5345 Max. :15.7538 Max. : 6.7481
##
## TextType Register Series
## Informational interaction :1496 Conversation:1780 Info Teens :1414
## Imaginative narrative :1055 Fiction :1476 Spoken BNC2014:1251
## General narrative exposition: 914 Informative :1777 Youth Fiction :1191
## Involved persuasion : 716 Solutions : 202
## Learned exposition : 655 Access : 194
## Scientific exposition : 183 NGL : 194
## (Other) : 14 (Other) : 587
## Country Corpus.y Dim1nopunct
## France : 257 Spoken BNC2014 :1251 Min. :-33.259
## Germany : 519 Textbook Conversation: 529 1st Qu.: -8.153
## Info Teens :1414 NA's :3253 Median : 5.111
## Spain : 401 Mean : 6.638
## Spoken BNC2014:1251 3rd Qu.: 23.699
## Youth Fiction :1191 Max. : 51.960
##
## Corpus Source
## Textbook :1177 Spoken.BNC2014:1251
## Reference:3856 Solutions : 202
## Access : 194
## NGL : 194
## GreenLine : 131
## Achievers : 106
## (Other) :2955
dimensions_ref <- dimensions_ref %>%
unite("Subcorpus", c(Corpus, Register), remove = FALSE) %>%
mutate_if(is.character, as.factor)
dimensions_ref$Subcorpus <- fct_relevel(dimensions_ref$Subcorpus, "Reference_Conversation", "Textbook_Conversation", "Reference_Fiction", "Textbook_Fiction")
ggplot(dimensions_ref,aes(x=Subcorpus,y=Dim1, fill = Subcorpus, colour = Subcorpus))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Subcorpus)+0.25, y = Dim1), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 1 (Biber 1988)')+
theme_cowplot()+
theme(axis.title.x=element_blank())+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours3Reg)+
scale_fill_manual(values = colours3Reg) +
annotate(geom = "text", x = 1.5, y = -42, label = "Conversation", size = 5) +
annotate(geom = "segment", x = 0.7, xend = 2.5, y = -39, yend = -39) +
annotate(geom = "text", x = 3.5, y = -42, label = "Fiction", size = 5) +
annotate(geom = "segment", x = 2.7, xend = 4.5, y = -39, yend = -39) +
annotate(geom = "text", x = 5.7, y = -42, label = "Informative", size = 5) +
annotate(geom = "segment", x = 4.7, xend = 6.5, y = -39, yend = -39) +
scale_x_discrete(labels=rep(c("Reference", "Textbook"), 3))+
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -45, to = 45, by = 5))
#ggsave(here("plots", "Dim1_3RegComparison.svg"), width = 13, height = 8)
#ggsave(here("plots", "Dim1_3RegComparison.png"), width = 20, height = 15, units = "cm", dpi = 300)
# Simple comparison rainplot Dim1 no punctuation-reliant features
# Colours used in Register Studies paper
bicolour <- c(classic[2], london[6])
# Colours used in PhD thesis:
bicolour <- c("#BD241E", "#F9B921")
SpokenRef <- dimensions_ref %>%
filter(Register=="Conversation")
SpokenRef$Corpus <- relevel(SpokenRef$Corpus, "Reference")
ggplot(SpokenRef, aes(x=Corpus,y=Dim1nopunct, fill = Corpus))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .5, aes(x=Corpus,y=Dim1nopunct, fill = Corpus, colour = Corpus))+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Corpus)+0.25, y = Dim1nopunct), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
theme_cowplot()+
guides(fill = "none", colour = "none") +
ylab('Adjusted Biber (1988) Dimension 1 \n(excluding punctuation-dependent variables)') +
xlab('')+
scale_x_discrete(labels=c("Spoken BNC2014", "Textbook Conversation"))+
scale_colour_manual(values = bicolour)+
scale_fill_manual(values = bicolour)+
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 50, by = 5))
#ggsave(here("plots", "SpokenDim1-nopunct.svg"), width = 8, height = 6)
#ggsave(here("plots", "SpokenDim1-nopunct.png"), width = 20, height = 15, units = "cm", dpi = 300)
# Mixed effect model
# Check distribution of the outcome variable.
ggplot(dimensions_ref, aes(x = Dim1nopunct)) +
geom_histogram(bins = 20) +
facet_grid(rows = vars(Register), cols = vars(Corpus), scales = "free_y")
md0 <- lmer(Dim1nopunct ~ 1 + (Register|Source), dimensions_ref, REML = FALSE)
md_corpus <- update(md0, .~. + Corpus)
md_register <- update(md0, . ~ . + Register)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00300994 (tol = 0.002, component 1)
md_both <- update(md_corpus, .~. + Register)
md_interaction <- update(md_both, . ~ . + Corpus:Register)
anova(md0, md_corpus, md_both, md_interaction)
## Data: dimensions_ref
## Models:
## md0: Dim1nopunct ~ 1 + (Register | Source)
## md_corpus: Dim1nopunct ~ (Register | Source) + Corpus
## md_both: Dim1nopunct ~ (Register | Source) + Corpus + Register
## md_interaction: Dim1nopunct ~ (Register | Source) + Corpus + Register + Corpus:Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 8 32835 32887 -16409 32819
## md_corpus 9 32834 32893 -16408 32816 2.4653 1 0.1164
## md_both 11 32773 32844 -16375 32751 65.7910 2 0.000000000000005172
## md_interaction 13 32754 32838 -16364 32728 23.0039 2 0.000010110273397824
##
## md0
## md_corpus
## md_both ***
## md_interaction ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(md0, md_register)
## Data: dimensions_ref
## Models:
## md0: Dim1nopunct ~ 1 + (Register | Source)
## md_register: Dim1nopunct ~ (Register | Source) + Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 8 32835 32887 -16409 32819
## md_register 10 32771 32837 -16376 32751 67.455 2 0.000000000000002251 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
md_final1 <- lmer(Dim1nopunct ~ 1 + Corpus + Register + Corpus:Register + (Register|Source), dimensions_ref)
tab_model(md_final1)
Dim 1 nopunct | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 14.65 | 12.29 – 17.02 | <0.001 |
Corpus [Reference] | 16.01 | 8.72 – 23.30 | <0.001 |
Register [Fiction] | -10.75 | -12.56 – -8.93 | <0.001 |
Register [Informative] | -20.72 | -22.70 – -18.74 | <0.001 |
Corpus [Reference] * Register [Fiction] |
-15.48 | -22.64 – -8.33 | <0.001 |
Corpus [Reference] * Register [Informative] |
-22.15 | -29.71 – -14.59 | <0.001 |
Random Effects | |||
σ2 | 35.32 | ||
τ00 Source | 12.34 | ||
τ11 Source.RegisterFiction | 4.87 | ||
τ11 Source.RegisterInformative | 7.32 | ||
ρ01 | 0.40 | ||
0.12 | |||
ICC | 0.35 | ||
N Source | 325 | ||
Observations | 5033 | ||
Marginal R2 / Conditional R2 | 0.829 / 0.889 |
# The reference levels are `CorpusTextbook` and `RegisterConversation`. The estimate for `CorpusReference` is positive, since `Dim1nopunct` values are higher for `Reference` texts in the `Conversation` register. The estimates for `RegisterFiction` and `RegisterInformative` are negative, since `Dim1` values are generally lower in these two registers.
ranef(md_final1)
## $Source
## (Intercept) RegisterFiction
## Access -0.76244356309470196 1.658131412388347048
## Achievers -0.27292168586377225 -1.746777523614002181
## BBC -1.48451072245553073 0.013613910897331827
## Book1 1.56858377181185560 0.808150163526446752
## Book10 -1.17679073167432491 -0.606294441731024314
## Book100 -4.08057225803153933 -2.102351941203952634
## Book101 -0.04599447611808670 -0.023696817514062628
## Book102 -1.47092730944075067 -0.757836570173723967
## Book103 2.19972141274745159 1.133318635173096389
## Book104 2.29814210269453323 1.184025966272949315
## Book105 1.29592733002658322 0.667674817564663847
## Book106 -3.09785005023388571 -1.596043558314470756
## Book107 4.52201865598057129 2.329789573227002197
## Book108 -0.63054392914807389 -0.324862585351766708
## Book109 -3.49936336126617986 -1.802907261611608858
## Book11 -3.37502043363838800 -1.738844532478764915
## Book110 -1.49417949677374717 -0.769816331365440920
## Book111 -0.48989333975532773 -0.252397984569531553
## Book112 -2.84457841343940521 -1.465555459195834187
## Book113 -1.10070028342448234 -0.567091876142269302
## Book114 -3.68352499533869393 -1.897789191009034315
## Book115 4.66096903394114559 2.401378207948874799
## Book116 -0.37975076958218851 -0.195651422673235820
## Book117 -3.63227918597451982 -1.871386833696702112
## Book118 3.20314549072983690 1.650292830163751612
## Book119 1.63438913822902987 0.842053751327516586
## Book12 -2.30167216717778222 -1.185844691061936462
## Book120 -0.51048745006055729 -0.263008277695048087
## Book121 2.53380098585006452 1.305439797259239976
## Book122 -6.01759201207765315 -3.100324034959673902
## Book123 -0.59616852758626504 -0.307152032117256113
## Book124 -0.62649694700669833 -0.322777539377101075
## Book125 1.38709218808705370 0.714643870970294470
## Book126 -1.98982704921284870 -1.025178944286307070
## Book127 -1.44682501639166605 -0.745418825951825625
## Book128 1.58625639205053015 0.817255275534157555
## Book129 2.61045418013731867 1.344932295276424661
## Book13 -4.24757612462301193 -2.188394015921805824
## Book130 -0.24074052502189336 -0.124031944075998379
## Book131 0.28764208414656556 0.148196099894380873
## Book132 -1.38522228527515323 -0.713680478201370372
## Book133 -1.46180363964273674 -0.753135963568117073
## Book134 3.28645585090645653 1.693215167121510323
## Book135 1.26460512505072198 0.651537301973762251
## Book136 0.73354049221460527 0.377927452387036178
## Book137 -0.18111339169628918 -0.093311444212583597
## Book138 -1.41726288944770662 -0.730188120296650811
## Book139 0.59782291063915793 0.308004386934866703
## Book14 -2.45283533148215094 -1.263725476358243505
## Book140 -0.14506172534219311 -0.074737262467856447
## Book141 0.59581139288841412 0.306968032722607143
## Book142 0.85556059577308585 0.440793439155723221
## Book143 1.40360339629107189 0.723150611795926990
## Book144 2.95272350408224460 1.521272899512483123
## Book145 0.99684577112291228 0.513584985016825701
## Book146 -2.26049591988726961 -1.164630273585976150
## Book147 1.46440391497127642 0.754475651616493215
## Book148 -0.09125362550981052 -0.047014787289907572
## Book149 0.65692321788718644 0.338453460695070651
## Book15 -3.07307725126788700 -1.583280362688485710
## Book150 0.76468309739129081 0.393972436351844202
## Book151 1.35201036064849545 0.696569360006478289
## Book152 1.67603234499739395 0.863508751031322741
## Book153 0.75421841575944781 0.388580926938064342
## Book154 1.05227026914785649 0.542140244829626861
## Book155 3.63999206891953175 1.875360588701238118
## Book156 1.83593603286153928 0.945892742130901798
## Book157 1.26110891562681160 0.649736019652453312
## Book158 3.06696094967654043 1.580129182483735573
## Book159 -4.75286219961775647 -2.448722492776416182
## Book16 2.78989832615154265 1.437383727295098224
## Book160 0.87577155984007793 0.451206331478904654
## Book161 0.29567618182959371 0.152335347968346912
## Book162 0.62681031822576283 0.322938991386538865
## Book163 2.68561070943145941 1.383653696409487877
## Book164 -2.73780034617078316 -1.410542323095044681
## Book165 -0.55178343055051871 -0.284284382921738410
## Book166 0.08469431108050204 0.043635362407457495
## Book167 5.73246143581028988 2.953421889229392416
## Book168 0.70593001642166486 0.363702257068756363
## Book169 -0.41604190233518162 -0.214348979919422644
## Book17 -3.77282201548776230 -1.943795915503280458
## Book170 -1.17590470599840224 -0.605837952375624100
## Book171 -0.64879126874410253 -0.334263798562980441
## Book172 1.65780895204125467 0.854119875370255466
## Book173 -0.81128119371634722 -0.417980245078321766
## Book174 -4.08032081831269622 -2.102222396927420078
## Book175 -1.27564246113942348 -0.657223848733504479
## Book176 -2.60991331583930153 -1.344653636540600550
## Book177 -6.94332121693758086 -3.577269048501796611
## Book178 1.49857577009402254 0.772081335674763336
## Book179 0.46438025985324111 0.239253388746562268
## Book18 -2.23296925733394325 -1.150448259693206854
## Book180 2.93084824854291126 1.510002547454158517
## Book181 1.33013510510916233 0.685299007948153127
## Book182 -0.25976613041434049 -0.133834127666955405
## Book183 2.20909652226430886 1.138148786055235284
## Book184 -5.72056986420450642 -2.947295231724387676
## Book185 7.98139814774100476 4.112096742411181616
## Book186 1.06870963743220448 0.550609973004821174
## Book187 1.44030162192219180 0.742057907394594762
## Book188 -1.58420688943945431 -0.816199351139138773
## Book189 1.05136029683204391 0.541671417924080467
## Book19 0.83010531757022743 0.427678623350578713
## Book190 -3.73334597962942549 -1.923457464087682478
## Book191 2.84535874413632017 1.465957493433118319
## Book192 2.18637116100888784 1.126440450966728957
## Book193 -0.62377900337920567 -0.321377227435535928
## Book194 -2.64037344177912692 -1.360347000326248335
## Book195 2.43573949550132962 1.254917529411576194
## Book196 -4.62657959415889319 -2.383660422081750774
## Book197 -1.92393786955606116 -0.991232175059726606
## Book198 -0.63855408019121296 -0.328989495875586846
## Book199 -0.39101766365034002 -0.201456240016905430
## Book2 3.17009912768191393 1.633267010962340837
## Book20 -0.24167444397759577 -0.124513108531690161
## Book200 0.08643044247251248 0.044529834793039083
## Book201 -4.24733665822411410 -2.188270640420346247
## Book202 1.99774347859692458 1.029257568467083939
## Book203 -1.06164331376421717 -0.546969331854225360
## Book204 4.48815810717639341 2.312344277320629526
## Book205 1.94429457836288933 1.001720156541324069
## Book206 -2.27589360933641194 -1.172563318329821858
## Book207 2.45384315525801844 1.264244717321913791
## Book208 0.06426782725450225 0.033111432132962540
## Book209 2.19466867173070401 1.130715412092301086
## Book21 4.38110465354904033 2.257189259393161507
## Book210 0.00635287868101807 0.003273067104983272
## Book211 -2.95754668711954283 -1.523757852009351765
## Book212 3.55658592218335556 1.832388901542895354
## Book213 1.24174805727590742 0.639761110359452712
## Book214 1.10648546185836594 0.570072458360056600
## Book215 2.03633348877933962 1.049139530527281483
## Book216 2.63017423808656847 1.355092267821614627
## Book217 -4.01748483524185929 -2.069848665344448335
## Book218 0.22059149245512288 0.113650959485721653
## Book219 1.15659380582777516 0.595888782040456144
## Book22 -2.08388945069998721 -1.073640841259597467
## Book220 2.60596418515798067 1.342619004624059365
## Book221 0.97008540104605956 0.499797772728727607
## Book222 -0.68560922757467213 -0.353232781912377947
## Book223 -0.70665832403780726 -0.364077488490667456
## Book224 -0.47389698430894078 -0.244156501072037208
## Book225 1.87979430381970958 0.968488965223209153
## Book226 3.11503382925531591 1.604896814401730154
## Book227 1.79508306520953909 0.924844881581911915
## Book228 0.10853319109079904 0.055917393577750441
## Book229 -1.82478680709234053 -0.940148548680421969
## Book23 3.41344488224207021 1.758641195545481040
## Book230 4.95824262153313455 2.554536555460693581
## Book231 -0.49243168358364714 -0.253705764885002016
## Book232 3.67884549214073564 1.895378263813041197
## Book233 -2.57140711889650087 -1.324814855905913413
## Book234 -1.65866896617679060 -0.854562963317969215
## Book235 2.83205638567753581 1.459103984327043246
## Book236 0.54673275443426717 0.281682223698483281
## Book237 0.30566193066364089 0.157480106379208007
## Book238 -2.24440377788132306 -1.156339439887897891
## Book239 4.23253087914970294 2.180642553865363098
## Book24 -1.48733075776526458 -0.766287792023699454
## Book240 -5.40486933721731511 -2.784643139375260645
## Book241 -4.09511984176459443 -2.109847002917616621
## Book242 -1.33845449757037183 -0.689585242766330375
## Book243 -1.26032858492989597 -0.649333985415169845
## Book244 -1.75550917789114602 -0.904456016108189598
## Book245 -1.89159793238488483 -0.974570313587621584
## Book246 0.28340352888607151 0.146012353518547799
## Book247 -3.22154641858465318 -1.659773173593373619
## Book248 -1.74557132233687851 -0.899335932797620474
## Book249 -0.90485268908574445 -0.466189222273620141
## Book25 2.60978367422040414 1.344586843872338289
## Book250 0.27216058145780925 0.140219873725024424
## Book251 0.36690546218180736 0.189033390877474172
## Book252 -1.81124498223465813 -0.933171664072887541
## Book253 3.91266048402475208 2.015842103438093780
## Book254 0.51378217794590186 0.264705754697656226
## Book255 -7.43699317158577244 -3.831613813535621027
## Book256 -10.10934239672800672 -5.208435059623019114
## Book257 2.09392515771430920 1.078811338628290928
## Book258 -1.05232807084708480 -0.542170024847451026
## Book259 -0.68072411303715197 -0.350715921682604348
## Book26 3.70843156572458321 1.910621307018362192
## Book260 1.80936723590380510 0.932204230243970478
## Book261 3.59500830588654052 1.852184500752071861
## Book262 -3.19121562510544177 -1.644146443194526075
## Book263 -2.92794864021574819 -1.508508640028957792
## Book264 -0.49049200575257301 -0.252706423323180385
## Book265 -3.54501763021608518 -1.826428800964861709
## Book266 -0.56691770696087274 -0.292081714613978582
## Book267 -0.04490885961860926 -0.023137496955386708
## Book268 -0.21002895936322416 -0.108209036013817733
## Book269 3.51181767890937202 1.809323851545042938
## Book27 -4.10248343353070677 -2.113640799587496844
## Book270 1.81931706477801747 0.937330482329613024
## Book271 2.45470523429405274 1.264688869127167825
## Book272 4.26429294416658866 2.197006689781219713
## Book273 -0.60208334763904625 -0.310199407003305394
## Book274 0.00046200526812710 0.000238029769079616
## Book275 3.42313129807749394 1.763631734579518273
## Book276 -1.54846652940392637 -0.797785557546308977
## Book277 3.68103660969065194 1.896507149651396329
## Book278 0.47249817077588363 0.243435818246039548
## Book279 -5.54641792560592783 -2.857570398287969216
## Book28 2.75843244133634480 1.421172186403320215
## Book280 2.46866612534980678 1.271881660862256513
## Book281 -0.64686356423297353 -0.333270625776231344
## Book282 0.42159958769011180 0.217212355410823510
## Book283 1.95449584695594480 1.006975952903498506
## Book284 1.34990305633819263 0.695483655593635230
## Book285 2.43953503792386384 1.256873031109709160
## Book286 2.37997974451792782 1.226189543896732737
## Book287 4.09677422481748810 2.110699357735227544
## Book288 3.82110050640609833 1.968669480455054632
## Book289 4.22687631933877483 2.177729267678172320
## Book29 -2.17702990655136830 -1.121627742552268714
## Book290 -2.31928492081673054 -1.194918959194282593
## Book291 2.33474454176609392 1.202883911671033257
## Book292 -0.05266361532739638 -0.027132825229709483
## Book293 -0.79047156365211035 -0.407258914001491501
## Book294 1.28827637858179078 0.663732970293033131
## Book295 -1.47971572628030801 -0.762364451077287342
## Book296 -5.94995472770890999 -3.065476624572439857
## Book297 1.40953018966379817 0.726204155457049749
## Book298 -0.30884476886848716 -0.159119936691079156
## Book299 -0.06567861410750322 -0.033838283734033373
## Book3 -5.81541053148806419 -2.996158099077422143
## Book30 3.34168877581228063 1.721671726533143598
## Book300 -4.34866686491780730 -2.240476983862931704
## Book31 -0.44887274562409912 -0.231263761169519605
## Book32 3.06300975409472187 1.578093486709654325
## Book33 2.04807931564528634 1.055191098873870192
## Book34 3.60459893516240593 1.857125689585524153
## Book35 -0.19795985285876405 -0.101990910740259094
## Book36 5.39916012850409199 2.781701697522993122
## Book37 3.53091512422149023 1.819163047786437115
## Book38 -5.39942147664238625 -2.781836346717057040
## Book39 -1.98854590397874453 -1.024518885353498776
## Book4 0.22772759114228366 0.117327549429215056
## Book40 0.08268279332975945 0.042599008195197699
## Book41 -1.38421652639978121 -0.713162301095240148
## Book42 1.25485884261557290 0.646515919064361011
## Book43 1.31409085638299583 0.677032849350367116
## Book44 5.39611890523808668 2.780134828654456491
## Book45 -1.87363795246753395 -0.965317150978159177
## Book46 0.24532837146128728 0.126395648786487680
## Book47 1.12017096655538761 0.577123368268466663
## Book48 -6.09270064809201273 -3.139020760992445869
## Book49 3.13083861158258481 1.613039597498056699
## Book5 0.83788797553441297 0.431688327148012252
## Book50 0.37163492356004224 0.191470057031299212
## Book51 0.53980020218617009 0.278110502931230630
## Book52 -3.19821041801204231 -1.647750230976146035
## Book53 -0.52091621173256553 -0.268381280783609011
## Book54 1.73547987852382435 0.894136719268643354
## Book55 1.77398607546662412 0.913975499903330491
## Book56 -0.50242940573763872 -0.258856692070936034
## Book57 1.36404354719312071 0.702768978954817825
## Book58 0.09884677525537422 0.050926854543713970
## Book59 -0.58235131636984960 -0.300033265683043004
## Book6 -4.69804834091000334 -2.420481840492337611
## Book60 -2.02068229471085736 -1.041075877649363157
## Book61 -0.36078503078946594 -0.185880082957644188
## Book62 -0.45899020097753984 -0.236476376106183162
## Book63 0.04295531775257873 0.022131012503067420
## Book64 -1.13906280052794351 -0.586856631476080581
## Book65 -1.64797679146599441 -0.849054247177802868
## Book66 0.75618204023041213 0.389592606050031875
## Book67 1.10928721872547342 0.571515951727132432
## Book68 2.05408992225762610 1.058287823960503138
## Book69 -0.26685433582172147 -0.137486042510156281
## Book7 0.61402281252460822 0.316350739608601828
## Book70 -2.76112437342344919 -1.422559096937199730
## Book71 -0.02307754174354709 -0.011889782024388940
## Book72 -5.07019109811745583 -2.612213538535468338
## Book73 1.16200574644287036 0.598677068373440591
## Book74 0.82553150935127562 0.425322151272702398
## Book75 -1.64467215516120224 -0.847351665257661812
## Book76 -8.64954325572579208 -4.456331833950856414
## Book77 -4.08767243675886505 -2.106010024822226878
## Book78 4.13498108876166270 2.130383918993091541
## Book79 0.00270101609782318 0.001391590707726020
## Book8 0.50532901406480146 0.260350599496136648
## Book80 6.20870023661870718 3.198784917756966273
## Book81 -2.84647019799070033 -1.466530125657364181
## Book82 0.53647161924148801 0.276395583460943783
## Book83 -3.35128931350759496 -1.726618020284128807
## Book84 1.62348144375922487 0.836433997236036841
## Book85 6.74406329131504290 3.474609357594888870
## Book86 -1.31899785265990843 -0.679560983272746388
## Book87 -0.79055537689172461 -0.407302095427002353
## Book88 -5.22252764777642486 -2.690698863788927309
## Book89 -2.96286284117507748 -1.526496788141752603
## Book9 -4.39101649756292023 -2.262295941296043722
## Book90 1.26570667048565277 0.652104829280475862
## Book91 1.81814367942341693 0.936725942372461540
## Book92 1.97905312616293538 1.019628110578169933
## Book93 3.40669192979314595 1.755162006404324293
## Book94 2.11147804475353507 1.087854762885271720
## Book95 0.71822661600507742 0.370037589068701989
## Book96 0.30427302555003211 0.156764528470743181
## Book97 -6.60639199368808061 -3.403679717948284278
## Book98 -0.49578421316821925 -0.255433021905434932
## Book99 2.02151051868755216 1.041502586986938983
## Dogo -1.05471503592226146 0.009672410110716123
## Ducksters -2.71129389744770544 0.024864295674814407
## EIM 4.37363336853911466 0.428912400655695358
## Encyclopedia -0.79747517382869559 0.007313356377533303
## Factmonster -5.67022796916759919 0.051999609817532377
## GreenLine 1.97893168765736860 0.517597701261653720
## History -2.33791653145736555 0.021440186899843505
## HT -2.82718577669806903 2.200907310089581070
## JTT -1.64596453709429569 0.374906344498937172
## NGL 2.76437273720136201 0.043865486802689646
## POC -3.60461805048577988 -2.008145598959947709
## Quatr 0.64382234671657967 -0.005904261874602246
## Revision 0.28611999609619287 -0.002623902995848873
## Science 0.18638034631938261 -0.001709226742943916
## Science_Tech -0.56077784461206359 0.005142690783267873
## Solutions -0.00380418017697378 -1.469397533125226696
## Spoken.BNC2014 -0.00000000003062265 -0.000000000007615864
## Teen 4.39394607474602505 -0.040295290186541877
## TeenVogue 5.35639709949097309 -0.049121580421598976
## TweenTribute 3.12461431627395703 -0.028654707739824814
## WhyFiles 1.28622698795597912 -0.011795522485306520
## World -0.66058999269444907 0.006058031891810894
## RegisterInformative
## Access -0.605981988140108729
## Achievers 3.439032234309786329
## BBC -0.930788272414960094
## Book1 -0.209724710676426701
## Book10 0.157340717252238471
## Book100 0.545585675173342333
## Book101 0.006149609839095708
## Book102 0.196667726609324522
## Book103 -0.294109849373435484
## Book104 -0.307269013132909996
## Book105 -0.173269664796772860
## Book106 0.414192545645043875
## Book107 -0.604608482722901242
## Book108 0.084305757515652460
## Book109 0.467876170646286171
## Book11 0.451251120081548829
## Book110 0.199776619069287897
## Book111 0.065500319963031545
## Book112 0.380329310729695946
## Book113 0.147167178846951463
## Book114 0.492499175242937570
## Book115 -0.623186596522011693
## Book116 0.050773903001546467
## Book117 0.485647445207590678
## Book118 -0.428270885731433959
## Book119 -0.218523100460133485
## Book12 0.307740994142610080
## Book120 0.068253818949198561
## Book121 -0.338777366066483565
## Book122 0.804571465280427223
## Book123 0.079709655428857967
## Book124 0.083764662947440144
## Book125 -0.185458700425075007
## Book126 0.266046295831720903
## Book127 0.193445172272606436
## Book128 -0.212087597015718665
## Book129 -0.349026145432438373
## Book13 0.567914630905355544
## Book130 0.032187784844917036
## Book131 -0.038458674608319407
## Book132 0.185208688386658188
## Book133 0.195447862523592059
## Book134 -0.439409749653382586
## Book135 -0.169081784943393654
## Book136 -0.098076730273353632
## Book137 0.024215444757060091
## Book138 0.189492620530253425
## Book139 -0.079930851780210116
## Book14 0.327951996875379348
## Book140 0.019395220659763839
## Book141 -0.079661905367608032
## Book142 -0.114391211766395981
## Book143 -0.187666302228519877
## Book144 -0.394788658233938883
## Book145 -0.133281495508706549
## Book146 0.302235597041778825
## Book147 -0.195795527723727963
## Book148 0.012200904122649703
## Book149 -0.087832753521909307
## Book15 0.410880342504125029
## Book150 -0.102240597054180607
## Book151 -0.180768146919569050
## Book152 -0.224090931549604189
## Book153 -0.100841435360046805
## Book154 -0.140691929698805257
## Book155 -0.486678682539757601
## Book156 -0.245470570479991435
## Book157 -0.168614330464346152
## Book158 -0.410062573249649565
## Book159 0.635473009228175290
## Book16 -0.373018406656677071
## Book160 -0.117093482864448539
## Book161 -0.039532859387225353
## Book162 -0.083806561690390913
## Book163 -0.359074815860445984
## Book164 0.366052738660718635
## Book165 0.073775224765065872
## Book166 -0.011323902622542011
## Book167 -0.766448587377895563
## Book168 -0.094385120586085114
## Book169 0.055626144528914873
## Book17 0.504438474916679480
## Book170 0.157222252760973125
## Book171 0.086745485687117097
## Book172 -0.221654405121147396
## Book173 0.108470912862278362
## Book174 0.545552056871767332
## Book175 0.170557512385841992
## Book176 0.348953830130919851
## Book177 0.928344446451658034
## Book178 -0.200364414994961437
## Book179 -0.062089138872747876
## Book18 0.298555193455035395
## Book180 -0.391863865996888217
## Book181 -0.177843354682517829
## Book182 0.034731569664114600
## Book183 -0.295363331760742809
## Book184 0.764858645890977518
## Book185 -1.067138681024891511
## Book186 -0.142889926273228440
## Book187 -0.192572973387009849
## Book188 0.211813571904748615
## Book189 -0.140570263464532524
## Book19 -0.110987758949772752
## Book190 0.499160401569357481
## Book191 -0.380433643461286830
## Book192 -0.292324877646936876
## Book193 0.083401265116126444
## Book194 0.353026447236041929
## Book195 -0.325666228452116679
## Book196 0.618588617479856495
## Book197 0.257236699947488878
## Book198 0.085376740551551131
## Book199 0.052280323086420805
## Book2 -0.423852480381536556
## Book20 0.032312652822196440
## Book200 -0.011556028990562173
## Book201 0.567882613475284015
## Book202 -0.267104747979448776
## Book203 0.141945136002254835
## Book204 -0.600081218110760872
## Book205 -0.259958457587441738
## Book206 0.304294317795389957
## Book207 -0.328086746165538234
## Book208 -0.008592815837424776
## Book209 -0.293434281598922264
## Book21 -0.585767825997200564
## Book210 -0.000849400374580936
## Book211 0.395433533366026657
## Book212 -0.475527011645779429
## Book213 -0.166025721243047875
## Book214 -0.147940675867041016
## Book215 -0.272264356835504873
## Book216 -0.351662780798844943
## Book217 0.537150683220949388
## Book218 -0.029493794188239362
## Book219 -0.154640323109546840
## Book22 0.278622742363889953
## Book220 -0.348425818618594563
## Book221 -0.129703547698193034
## Book222 0.091668165560642806
## Book223 0.094482497663946258
## Book224 0.063361555634241062
## Book225 -0.251334562797626337
## Book226 -0.416490072336546613
## Book227 -0.240008396909757199
## Book228 -0.014511237786181132
## Book229 0.243979883026295724
## Book23 -0.456388592820412498
## Book230 -0.662933034213037065
## Book231 0.065839704721791431
## Book232 -0.491873510568892280
## Book233 0.343805427375388384
## Book234 0.221769391785547887
## Book235 -0.378655075220803272
## Book236 -0.073099933074410275
## Book237 -0.040867986221215846
## Book238 0.300084025740959714
## Book239 -0.565903033048327231
## Book24 0.198860920569236793
## Book240 0.722648466955933211
## Book241 0.547530734050198697
## Book242 0.178955684293652301
## Book243 0.168509997732755934
## Book244 0.234717240506548963
## Book245 0.252912746016303980
## Book246 -0.037891966096049862
## Book247 0.430731149148587511
## Book248 0.233388517158572811
## Book249 0.120981723662800605
## Book25 -0.348936496628238002
## Book250 -0.036388747754183104
## Book251 -0.049056443962056440
## Book252 0.242169297355740276
## Book253 -0.523135329290913775
## Book254 -0.068694334696541917
## Book255 0.994349979415999452
## Book256 1.351651692044295583
## Book257 -0.279964548767753063
## Book258 0.140699657972465253
## Book259 0.091015009987180179
## Book26 -0.495829264054253427
## Book260 -0.241918236613534704
## Book261 -0.480664208300786433
## Book262 0.426675824210687671
## Book263 0.391476179009162872
## Book264 0.065580363538210826
## Book265 0.473980293689458376
## Book266 0.075798726345598255
## Book267 0.006004459410824003
## Book268 0.028081549438219389
## Book269 -0.469541353093873126
## Book27 0.548515270024904633
## Book270 -0.243248560833014715
## Book271 -0.328202008913795806
## Book272 -0.570149723608219583
## Book273 0.080500485951628939
## Book274 -0.000061771594816720
## Book275 -0.457683697866814065
## Book276 0.207034970466545371
## Book277 -0.492166470054049343
## Book278 -0.063174529752179298
## Book279 0.741573969871323735
## Book28 -0.368811316345253604
## Book280 -0.330068625086976652
## Book281 0.086487745375039629
## Book282 -0.056369224990436444
## Book283 -0.261322400108496777
## Book284 -0.180486393534938394
## Book285 -0.326173704718753177
## Book286 -0.318210969859918591
## Book287 -0.547751930401550791
## Book288 -0.510893464902993699
## Book289 -0.565147000159513579
## Book29 0.291075921790283076
## Book290 0.310095876124384717
## Book291 -0.312162877319371090
## Book292 0.007041295266592798
## Book293 0.105688598189046412
## Book294 -0.172246707905982066
## Book295 0.197842766292956190
## Book296 0.795528142156672002
## Book297 -0.188458733622794666
## Book298 0.041293541957312441
## Book299 0.008781442590990646
## Book3 0.777539149070879843
## Book30 -0.446794569899424177
## Book300 0.581430789010129123
## Book31 0.060015734191746689
## Book32 -0.409534285653467167
## Book33 -0.273834811780523046
## Book34 -0.481946506375158179
## Book35 0.026467870962605122
## Book36 -0.721885127332582366
## Book37 -0.472094743142091156
## Book38 0.721920070421801952
## Book39 0.265875002580837183
## Book4 -0.030447913604376764
## Book40 -0.011054956209939388
## Book41 0.185074215180356882
## Book42 -0.167778675539475064
## Book43 -0.175698186867713102
## Book44 -0.721478505970671202
## Book45 0.250511438760925353
## Book46 -0.032801194714647451
## Book47 -0.149770471995639143
## Book48 0.814613732222421172
## Book49 -0.418603222721279478
## Book5 -0.112028325427103323
## Book50 -0.049688788205973007
## Book51 -0.072173028473833847
## Book52 0.427611050588099006
## Book53 0.069648178028821672
## Book54 -0.232039258564907730
## Book55 -0.237187661320439419
## Book56 0.067176432427285604
## Book57 -0.182377022780672388
## Book58 -0.013216132739780546
## Book59 0.077862249713720064
## Book6 0.628144219484759514
## Book60 0.270171741696461187
## Book61 0.048238122539867201
## Book62 0.061368470612276516
## Book63 -0.005743264561042511
## Book64 0.152296371144440001
## Book65 0.220339813532846068
## Book66 -0.101103978286634436
## Book67 -0.148315279798879540
## Book68 -0.274638449275322660
## Book69 0.035679285594237178
## Book7 -0.082096830924561742
## Book70 0.369171236349703613
## Book71 0.003085541781232836
## Book72 0.677900906687706861
## Book73 -0.155363917029167409
## Book74 -0.110376226035403036
## Book75 0.219897972997856295
## Book76 1.156471837455626428
## Book77 0.546534991974968909
## Book78 -0.552860311369494428
## Book79 -0.000361134565987433
## Book8 -0.067564119415011156
## Book80 -0.830123251433016685
## Book81 0.380582248427262237
## Book82 -0.071727986195837062
## Book83 0.448078192761441896
## Book84 -0.217064706520367412
## Book85 -0.901703018972842552
## Book86 0.176354268100325673
## Book87 0.105699804289571514
## Book88 0.698268794827827444
## Book89 0.396144320313618903
## Book9 0.587093071518311804
## Book90 -0.169229065121723449
## Book91 -0.243091675425663456
## Book92 -0.264605787562351091
## Book93 -0.455485701292391076
## Book94 -0.282311426392008735
## Book95 -0.096029215620268074
## Book96 -0.040682285126800215
## Book97 0.883295922340756712
## Book98 0.066287948742795352
## Book99 -0.270282477914066344
## Dogo -0.661306362646309265
## Ducksters -1.699981363987139726
## EIM 1.367131560834593529
## Encyclopedia -0.500016960547408296
## Factmonster -3.555233125488755697
## GreenLine 0.964283132993086434
## History -1.465873743077808822
## HT -4.329443744225784485
## JTT -3.052325585958935328
## NGL -0.852107547059569703
## POC 0.579985832516267785
## Quatr 0.403676632830194004
## Revision 0.179397247079479738
## Science 0.116860483347946104
## Science_Tech -0.351607727246369628
## Solutions 2.489426104726500721
## Spoken.BNC2014 -0.000000000002809848
## Teen 2.755004335184580544
## TeenVogue 3.358461159749563052
## TweenTribute 1.959133280354183659
## WhyFiles 0.806464364279367407
## World -0.414189947417665905
##
## with conditional variances for "Source"
# check distribution of residuals
plot(md_final1)
# This function can be used to estimate mean and sd of all the terms of the model
library(merTools)
## Loading required package: arm
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked _by_ '.GlobalEnv':
##
## select
## The following object is masked from 'package:dplyr':
##
## select
##
## arm (Version 1.11-2, built: 2020-7-27)
## Working directory is /Users/Elen/Documents/PhD/GitHubRepo/6_7_MDAs
##
## Attaching package: 'arm'
## The following object is masked from 'package:scales':
##
## rescale
## The following object is masked from 'package:car':
##
## logit
(randomSims <- REsim(md_final1, n.sims = 500))
## groupFctr groupID term mean median
## 1 Source Access (Intercept) -0.738954439 -0.6852231098
## 2 Source Achievers (Intercept) -0.272026472 -0.2975384152
## 3 Source BBC (Intercept) -1.490354619 -1.5352112256
## 4 Source Book1 (Intercept) 1.498175293 1.5680681891
## 5 Source Book10 (Intercept) -1.330456433 -1.3600749799
## 6 Source Book100 (Intercept) -4.195233395 -4.1959301576
## 7 Source Book101 (Intercept) 0.009925686 0.0024220479
## 8 Source Book102 (Intercept) -1.364628531 -1.2883309234
## 9 Source Book103 (Intercept) 2.213601727 2.3528064416
## 10 Source Book104 (Intercept) 2.364239625 2.2279685226
## 11 Source Book105 (Intercept) 1.405088882 1.3465905005
## 12 Source Book106 (Intercept) -3.050055634 -3.1917778204
## 13 Source Book107 (Intercept) 4.420694673 4.4418873641
## 14 Source Book108 (Intercept) -0.589192797 -0.6130686890
## 15 Source Book109 (Intercept) -3.423418587 -3.4207400150
## 16 Source Book11 (Intercept) -3.300515697 -3.3373909920
## 17 Source Book110 (Intercept) -1.478295082 -1.6080043950
## 18 Source Book111 (Intercept) -0.355600620 -0.4061290006
## 19 Source Book112 (Intercept) -2.787846366 -2.8490328732
## 20 Source Book113 (Intercept) -1.046683442 -1.1452619662
## 21 Source Book114 (Intercept) -3.770305736 -3.7407703382
## 22 Source Book115 (Intercept) 4.786999137 4.6960359748
## 23 Source Book116 (Intercept) -0.553517101 -0.5469057131
## 24 Source Book117 (Intercept) -3.697560420 -3.7581131796
## 25 Source Book118 (Intercept) 3.377505817 3.4114232473
## 26 Source Book119 (Intercept) 1.463748799 1.4663060321
## 27 Source Book12 (Intercept) -2.233690922 -2.3079143209
## 28 Source Book120 (Intercept) -0.497310362 -0.4774552451
## 29 Source Book121 (Intercept) 2.432573774 2.5005822706
## 30 Source Book122 (Intercept) -6.069836157 -6.1147337220
## 31 Source Book123 (Intercept) -0.634745676 -0.6821761864
## 32 Source Book124 (Intercept) -0.600753277 -0.5376055400
## 33 Source Book125 (Intercept) 1.425354036 1.4212318661
## 34 Source Book126 (Intercept) -2.025789968 -2.0195138982
## 35 Source Book127 (Intercept) -1.371257182 -1.2777597407
## 36 Source Book128 (Intercept) 1.617943877 1.5836619646
## 37 Source Book129 (Intercept) 2.536886320 2.5972964873
## 38 Source Book13 (Intercept) -4.290499559 -4.3545935814
## 39 Source Book130 (Intercept) -0.235319205 -0.1720110434
## 40 Source Book131 (Intercept) 0.403672465 0.4724931677
## 41 Source Book132 (Intercept) -1.249619653 -1.2955309678
## 42 Source Book133 (Intercept) -1.246460020 -1.2340819177
## 43 Source Book134 (Intercept) 3.488201993 3.5716737098
## 44 Source Book135 (Intercept) 1.234803822 1.1963536520
## 45 Source Book136 (Intercept) 0.592490684 0.6342967963
## 46 Source Book137 (Intercept) -0.048625889 -0.0811732842
## 47 Source Book138 (Intercept) -1.444462721 -1.3855486804
## 48 Source Book139 (Intercept) 0.767423091 0.7587522350
## 49 Source Book14 (Intercept) -2.451984173 -2.5003481634
## 50 Source Book140 (Intercept) -0.077532782 -0.0791755055
## 51 Source Book141 (Intercept) 0.428275350 0.4890458648
## 52 Source Book142 (Intercept) 0.974120079 0.8928612369
## 53 Source Book143 (Intercept) 1.466538577 1.4122931963
## 54 Source Book144 (Intercept) 2.848193190 2.7718682782
## 55 Source Book145 (Intercept) 1.100927931 1.0812894161
## 56 Source Book146 (Intercept) -2.299557858 -2.2564958982
## 57 Source Book147 (Intercept) 1.514454431 1.4721723023
## 58 Source Book148 (Intercept) -0.086403925 -0.1653178778
## 59 Source Book149 (Intercept) 0.723152084 0.7934384648
## 60 Source Book15 (Intercept) -3.109427002 -3.0660493034
## 61 Source Book150 (Intercept) 0.786713311 0.7998684289
## 62 Source Book151 (Intercept) 1.333745265 1.3977056940
## 63 Source Book152 (Intercept) 1.536867516 1.4835327655
## 64 Source Book153 (Intercept) 0.753105215 0.7727520505
## 65 Source Book154 (Intercept) 1.047567484 1.0455918029
## 66 Source Book155 (Intercept) 3.609172206 3.6770626790
## 67 Source Book156 (Intercept) 1.845045570 1.7995128293
## 68 Source Book157 (Intercept) 1.344240621 1.3700873274
## 69 Source Book158 (Intercept) 3.075144130 3.1165774178
## 70 Source Book159 (Intercept) -4.699927052 -4.7064773207
## 71 Source Book16 (Intercept) 2.807757534 2.7024694298
## 72 Source Book160 (Intercept) 0.881892082 0.8756038883
## 73 Source Book161 (Intercept) 0.463930400 0.5145735306
## 74 Source Book162 (Intercept) 0.527366274 0.4261551526
## 75 Source Book163 (Intercept) 2.461639200 2.4392049732
## 76 Source Book164 (Intercept) -2.834783866 -2.7698568181
## 77 Source Book165 (Intercept) -0.349528166 -0.5266601735
## 78 Source Book166 (Intercept) 0.190017168 0.1677464932
## 79 Source Book167 (Intercept) 5.678060776 5.6304168624
## 80 Source Book168 (Intercept) 0.674801222 0.6978984049
## 81 Source Book169 (Intercept) -0.199877754 -0.1705315185
## 82 Source Book17 (Intercept) -3.880417134 -3.8873269321
## 83 Source Book170 (Intercept) -1.173987168 -1.1852650187
## 84 Source Book171 (Intercept) -0.678939090 -0.7222456505
## 85 Source Book172 (Intercept) 1.696106994 1.5565855419
## 86 Source Book173 (Intercept) -0.703692369 -0.6496011694
## 87 Source Book174 (Intercept) -4.046213925 -4.0463531734
## 88 Source Book175 (Intercept) -1.247423477 -1.2748482565
## 89 Source Book176 (Intercept) -2.680135409 -2.6056841604
## 90 Source Book177 (Intercept) -6.888839065 -6.8418620384
## 91 Source Book178 (Intercept) 1.561113411 1.6227168256
## 92 Source Book179 (Intercept) 0.301329425 0.3352258381
## 93 Source Book18 (Intercept) -2.189605633 -2.2037122042
## 94 Source Book180 (Intercept) 3.015401743 3.0190657313
## 95 Source Book181 (Intercept) 1.336865079 1.2835191429
## 96 Source Book182 (Intercept) -0.295092552 -0.2323651317
## 97 Source Book183 (Intercept) 2.099036730 2.0514095712
## 98 Source Book184 (Intercept) -5.526765294 -5.4329989761
## 99 Source Book185 (Intercept) 7.942233579 7.9284456922
## 100 Source Book186 (Intercept) 0.949179857 0.9846686432
## 101 Source Book187 (Intercept) 1.523416872 1.5639789658
## 102 Source Book188 (Intercept) -1.505379022 -1.5842698045
## 103 Source Book189 (Intercept) 0.907331260 1.0164108290
## 104 Source Book19 (Intercept) 0.682451530 0.7168723086
## 105 Source Book190 (Intercept) -3.586721387 -3.4311952873
## 106 Source Book191 (Intercept) 2.854722842 2.9274384156
## 107 Source Book192 (Intercept) 2.006893882 2.0343361185
## 108 Source Book193 (Intercept) -0.736686631 -0.7235803883
## 109 Source Book194 (Intercept) -2.563179324 -2.4823444896
## 110 Source Book195 (Intercept) 2.462398902 2.5113502149
## 111 Source Book196 (Intercept) -4.663786548 -4.6329313043
## 112 Source Book197 (Intercept) -1.902680230 -1.8908869043
## 113 Source Book198 (Intercept) -0.621566511 -0.6291284846
## 114 Source Book199 (Intercept) -0.307987832 -0.2909830086
## 115 Source Book2 (Intercept) 3.272390341 3.2876896569
## 116 Source Book20 (Intercept) -0.231481302 -0.2173803263
## 117 Source Book200 (Intercept) -0.009255846 -0.0955357430
## 118 Source Book201 (Intercept) -4.352409534 -4.4131132557
## 119 Source Book202 (Intercept) 1.991263023 2.0451766130
## 120 Source Book203 (Intercept) -0.988888319 -1.0228258939
## 121 Source Book204 (Intercept) 4.379774081 4.4208588050
## 122 Source Book205 (Intercept) 1.858375218 1.9005629967
## 123 Source Book206 (Intercept) -2.305018475 -2.3401818633
## 124 Source Book207 (Intercept) 2.439455221 2.4350469852
## 125 Source Book208 (Intercept) 0.162828970 0.2979159798
## 126 Source Book209 (Intercept) 2.188221378 2.2119509018
## 127 Source Book21 (Intercept) 4.381546898 4.4653194955
## 128 Source Book210 (Intercept) -0.051376836 0.0432624758
## 129 Source Book211 (Intercept) -2.980192248 -3.0023069811
## 130 Source Book212 (Intercept) 3.477569712 3.4652662331
## 131 Source Book213 (Intercept) 1.454160611 1.5305863800
## 132 Source Book214 (Intercept) 1.173426159 1.1089833508
## 133 Source Book215 (Intercept) 2.138513263 2.0980992751
## 134 Source Book216 (Intercept) 2.659939997 2.7167728750
## 135 Source Book217 (Intercept) -4.076803286 -4.1594730352
## 136 Source Book218 (Intercept) 0.184554722 0.1319562105
## 137 Source Book219 (Intercept) 1.045837099 1.1114267900
## 138 Source Book22 (Intercept) -2.138039114 -2.0983507693
## 139 Source Book220 (Intercept) 2.649876719 2.5750836520
## 140 Source Book221 (Intercept) 1.012956157 0.9500700720
## 141 Source Book222 (Intercept) -0.675396064 -0.6632462128
## 142 Source Book223 (Intercept) -0.852940379 -0.8036897675
## 143 Source Book224 (Intercept) -0.533171931 -0.5176443741
## 144 Source Book225 (Intercept) 1.891325925 1.8254002288
## 145 Source Book226 (Intercept) 3.288538375 3.3461344194
## 146 Source Book227 (Intercept) 1.807471886 1.8330294049
## 147 Source Book228 (Intercept) 0.242314277 0.1920031905
## 148 Source Book229 (Intercept) -1.695955162 -1.7078809039
## 149 Source Book23 (Intercept) 3.521068242 3.4965222246
## 150 Source Book230 (Intercept) 4.896898797 4.9066522817
## 151 Source Book231 (Intercept) -0.427730047 -0.3554793739
## 152 Source Book232 (Intercept) 3.740412076 3.7870123266
## 153 Source Book233 (Intercept) -2.502839674 -2.4570041416
## 154 Source Book234 (Intercept) -1.709330894 -1.7460669308
## 155 Source Book235 (Intercept) 3.016173269 3.0235827587
## 156 Source Book236 (Intercept) 0.624534661 0.7238752243
## 157 Source Book237 (Intercept) 0.335942693 0.2677270109
## 158 Source Book238 (Intercept) -2.124709357 -2.2391072352
## 159 Source Book239 (Intercept) 4.397751468 4.4924737064
## 160 Source Book24 (Intercept) -1.351393275 -1.3215793653
## 161 Source Book240 (Intercept) -5.608584561 -5.7073780409
## 162 Source Book241 (Intercept) -4.262647603 -4.2669132602
## 163 Source Book242 (Intercept) -1.148429718 -1.1809052135
## 164 Source Book243 (Intercept) -1.137531570 -1.1817392619
## 165 Source Book244 (Intercept) -1.567879261 -1.5819493583
## 166 Source Book245 (Intercept) -1.935253095 -1.9431882120
## 167 Source Book246 (Intercept) 0.367528684 0.3733901879
## 168 Source Book247 (Intercept) -3.227811685 -3.0538709809
## 169 Source Book248 (Intercept) -1.713350190 -1.6987698522
## 170 Source Book249 (Intercept) -0.844321950 -0.8300494524
## 171 Source Book25 (Intercept) 2.629160738 2.5133399990
## 172 Source Book250 (Intercept) 0.313387802 0.2051933332
## 173 Source Book251 (Intercept) 0.324471310 0.1834061296
## 174 Source Book252 (Intercept) -1.730293559 -1.6466141043
## 175 Source Book253 (Intercept) 3.771484118 3.8461454957
## 176 Source Book254 (Intercept) 0.610931946 0.6389674870
## 177 Source Book255 (Intercept) -7.368708414 -7.4619329359
## 178 Source Book256 (Intercept) -10.045061893 -10.0928533123
## 179 Source Book257 (Intercept) 2.136182431 2.0736402297
## 180 Source Book258 (Intercept) -0.983503378 -0.9105157279
## 181 Source Book259 (Intercept) -0.712792697 -0.6755948599
## 182 Source Book26 (Intercept) 3.669552131 3.7180286596
## 183 Source Book260 (Intercept) 1.807958005 1.8532718579
## 184 Source Book261 (Intercept) 3.578876489 3.5190738148
## 185 Source Book262 (Intercept) -3.334669362 -3.1945600483
## 186 Source Book263 (Intercept) -3.082506625 -3.2523674930
## 187 Source Book264 (Intercept) -0.502211091 -0.5269310814
## 188 Source Book265 (Intercept) -3.575224107 -3.5753816414
## 189 Source Book266 (Intercept) -0.560177205 -0.5780524212
## 190 Source Book267 (Intercept) -0.085471155 0.0516213035
## 191 Source Book268 (Intercept) -0.094655498 -0.0665326268
## 192 Source Book269 (Intercept) 3.642303265 3.6768794303
## 193 Source Book27 (Intercept) -4.001148340 -3.9663448976
## 194 Source Book270 (Intercept) 1.882898774 1.7876854010
## 195 Source Book271 (Intercept) 2.596974922 2.6537419547
## 196 Source Book272 (Intercept) 4.239824683 4.1945960379
## 197 Source Book273 (Intercept) -0.614945928 -0.5528907736
## 198 Source Book274 (Intercept) -0.019426385 0.0226591216
## 199 Source Book275 (Intercept) 3.309552315 3.3028356906
## 200 Source Book276 (Intercept) -1.432773181 -1.4617798285
## 201 Source Book277 (Intercept) 3.640569849 3.5975022001
## 202 Source Book278 (Intercept) 0.655576923 0.7028966516
## 203 Source Book279 (Intercept) -5.527092671 -5.5614768874
## 204 Source Book28 (Intercept) 2.741883257 2.7538295243
## 205 Source Book280 (Intercept) 2.377553878 2.3979345084
## 206 Source Book281 (Intercept) -0.672124696 -0.6245619466
## 207 Source Book282 (Intercept) 0.424590636 0.5372093869
## 208 Source Book283 (Intercept) 1.925456764 1.8238280984
## 209 Source Book284 (Intercept) 1.308460080 1.4612959418
## 210 Source Book285 (Intercept) 2.282084640 2.4445264728
## 211 Source Book286 (Intercept) 2.277308882 2.3319216782
## 212 Source Book287 (Intercept) 4.183002579 4.2086288761
## 213 Source Book288 (Intercept) 3.719459852 3.7898649309
## 214 Source Book289 (Intercept) 4.271102895 4.2149090509
## 215 Source Book29 (Intercept) -2.173842748 -2.1307337225
## 216 Source Book290 (Intercept) -2.337309902 -2.3947503738
## 217 Source Book291 (Intercept) 2.377105195 2.2941185981
## 218 Source Book292 (Intercept) -0.158795330 -0.2116071436
## 219 Source Book293 (Intercept) -0.762002725 -0.8504100730
## 220 Source Book294 (Intercept) 1.379019035 1.3393286740
## 221 Source Book295 (Intercept) -1.419349173 -1.3963484421
## 222 Source Book296 (Intercept) -5.682579796 -5.6848488830
## 223 Source Book297 (Intercept) 1.365389081 1.2895895185
## 224 Source Book298 (Intercept) -0.299224869 -0.1904037811
## 225 Source Book299 (Intercept) 0.025785468 0.1011447780
## 226 Source Book3 (Intercept) -5.741119928 -5.6537105530
## 227 Source Book30 (Intercept) 3.232871494 3.2909732425
## 228 Source Book300 (Intercept) -4.419632219 -4.4775836270
## 229 Source Book31 (Intercept) -0.397946927 -0.3895836235
## 230 Source Book32 (Intercept) 3.073263406 3.1129607310
## 231 Source Book33 (Intercept) 2.123131424 2.2267362365
## 232 Source Book34 (Intercept) 3.578044704 3.5086603621
## 233 Source Book35 (Intercept) -0.175281572 -0.2495679551
## 234 Source Book36 (Intercept) 5.441042175 5.5939733830
## 235 Source Book37 (Intercept) 3.662147537 3.6056851381
## 236 Source Book38 (Intercept) -5.337518026 -5.2746304589
## 237 Source Book39 (Intercept) -2.028527818 -1.9793500526
## 238 Source Book4 (Intercept) 0.374636543 0.3903137240
## 239 Source Book40 (Intercept) 0.175282416 0.1451540507
## 240 Source Book41 (Intercept) -1.374981002 -1.3821788693
## 241 Source Book42 (Intercept) 1.404630147 1.3531660381
## 242 Source Book43 (Intercept) 1.320697786 1.3863999724
## 243 Source Book44 (Intercept) 5.487441265 5.4540574906
## 244 Source Book45 (Intercept) -1.739028057 -1.7478708780
## 245 Source Book46 (Intercept) 0.212819112 0.2377185797
## 246 Source Book47 (Intercept) 1.212980592 1.3009706287
## 247 Source Book48 (Intercept) -5.956380421 -6.0214343237
## 248 Source Book49 (Intercept) 3.141848403 3.1162522342
## 249 Source Book5 (Intercept) 0.790103121 0.7645261768
## 250 Source Book50 (Intercept) 0.329356855 0.2248667598
## 251 Source Book51 (Intercept) 0.517833703 0.5198002321
## 252 Source Book52 (Intercept) -3.250076273 -3.2227865418
## 253 Source Book53 (Intercept) -0.488079511 -0.5428008396
## 254 Source Book54 (Intercept) 1.849347667 1.8347835030
## 255 Source Book55 (Intercept) 1.777269782 1.7464747338
## 256 Source Book56 (Intercept) -0.500673120 -0.4742496283
## 257 Source Book57 (Intercept) 1.296710930 1.4302661800
## 258 Source Book58 (Intercept) 0.002865334 0.0105702110
## 259 Source Book59 (Intercept) -0.624800300 -0.6359006144
## 260 Source Book6 (Intercept) -4.714326020 -4.8137347519
## 261 Source Book60 (Intercept) -2.168701582 -2.2251628509
## 262 Source Book61 (Intercept) -0.399809426 -0.5234111864
## 263 Source Book62 (Intercept) -0.611859325 -0.5414162296
## 264 Source Book63 (Intercept) 0.062847985 0.1848141259
## 265 Source Book64 (Intercept) -1.183548033 -1.1438816011
## 266 Source Book65 (Intercept) -1.637678698 -1.6375238446
## 267 Source Book66 (Intercept) 0.892410019 0.8724282246
## 268 Source Book67 (Intercept) 1.175968598 0.9858246667
## 269 Source Book68 (Intercept) 2.138254845 2.1200762697
## 270 Source Book69 (Intercept) -0.136906201 -0.1914247662
## 271 Source Book7 (Intercept) 0.735300221 0.8180617088
## 272 Source Book70 (Intercept) -2.688321739 -2.7295013059
## 273 Source Book71 (Intercept) -0.095172715 -0.1641680787
## 274 Source Book72 (Intercept) -5.223011456 -5.1545576017
## 275 Source Book73 (Intercept) 1.108167501 1.1785206349
## 276 Source Book74 (Intercept) 0.823191576 0.8389637340
## 277 Source Book75 (Intercept) -1.676973370 -1.6384104009
## 278 Source Book76 (Intercept) -8.820914895 -8.7345225176
## 279 Source Book77 (Intercept) -3.819101428 -3.7536536914
## 280 Source Book78 (Intercept) 4.287647895 4.2691734717
## 281 Source Book79 (Intercept) 0.026984575 0.0695777454
## 282 Source Book8 (Intercept) 0.446731563 0.3530251391
## 283 Source Book80 (Intercept) 6.193815918 6.1124829992
## 284 Source Book81 (Intercept) -2.704115607 -2.7282691042
## 285 Source Book82 (Intercept) 0.465185351 0.4985275390
## 286 Source Book83 (Intercept) -3.432869808 -3.3792846896
## 287 Source Book84 (Intercept) 1.617874244 1.7094715449
## 288 Source Book85 (Intercept) 6.723438662 6.7264718225
## 289 Source Book86 (Intercept) -1.238706512 -1.2516860355
## 290 Source Book87 (Intercept) -0.925138438 -0.9685923134
## 291 Source Book88 (Intercept) -5.211118194 -5.2677092342
## 292 Source Book89 (Intercept) -3.131500817 -3.2012200408
## 293 Source Book9 (Intercept) -4.431846484 -4.4775275239
## 294 Source Book90 (Intercept) 1.334041513 1.3476266769
## 295 Source Book91 (Intercept) 1.812408863 1.7222649851
## 296 Source Book92 (Intercept) 1.935098347 1.9323026172
## 297 Source Book93 (Intercept) 3.380156490 3.4112206087
## 298 Source Book94 (Intercept) 2.046056169 2.0825509453
## 299 Source Book95 (Intercept) 0.704108989 0.5851737372
## 300 Source Book96 (Intercept) 0.230819622 0.2344541945
## 301 Source Book97 (Intercept) -6.488427844 -6.4395560329
## 302 Source Book98 (Intercept) -0.573412655 -0.6551567868
## 303 Source Book99 (Intercept) 2.001303414 1.9747350171
## 304 Source Dogo (Intercept) -1.037565948 -0.9900659909
## 305 Source Ducksters (Intercept) -2.806855933 -2.7704918453
## 306 Source EIM (Intercept) 4.245682225 4.2052633134
## 307 Source Encyclopedia (Intercept) -0.830635098 -0.9996824226
## 308 Source Factmonster (Intercept) -5.630653589 -5.5857371688
## 309 Source GreenLine (Intercept) 1.941265345 1.9387053296
## 310 Source History (Intercept) -2.353877978 -2.4004645600
## 311 Source HT (Intercept) -2.848989634 -2.8120351293
## 312 Source JTT (Intercept) -1.621353666 -1.6077100914
## 313 Source NGL (Intercept) 2.777200024 2.7512005311
## 314 Source POC (Intercept) -3.674678976 -3.6275273232
## 315 Source Quatr (Intercept) 0.582643237 0.5257351641
## 316 Source Revision (Intercept) 0.343874029 0.1654422259
## 317 Source Science (Intercept) 0.117413401 0.1981636069
## 318 Source Science_Tech (Intercept) -0.866948490 -0.7882464762
## 319 Source Solutions (Intercept) -0.009681306 0.0213605744
## 320 Source Spoken.BNC2014 (Intercept) -0.047177852 0.0243420951
## 321 Source Teen (Intercept) 4.375363918 4.4165367802
## 322 Source TeenVogue (Intercept) 5.323873696 5.3565913959
## 323 Source TweenTribute (Intercept) 3.222055226 3.3158883254
## 324 Source WhyFiles (Intercept) 1.413232595 1.6403149052
## 325 Source World (Intercept) -0.671001458 -0.7990991726
## 326 Source Access RegisterFiction 1.694570210 1.6642228904
## 327 Source Achievers RegisterFiction -1.677434436 -1.6714292592
## 328 Source BBC RegisterFiction 0.004951684 -0.0155757831
## 329 Source Book1 RegisterFiction 0.883958171 0.8648689708
## 330 Source Book10 RegisterFiction -0.556513862 -0.6206259353
## 331 Source Book100 RegisterFiction -2.082624455 -2.1193873167
## 332 Source Book101 RegisterFiction -0.002637102 -0.0197392970
## 333 Source Book102 RegisterFiction -0.958336838 -0.9017344760
## 334 Source Book103 RegisterFiction 1.190719184 1.3713476287
## 335 Source Book104 RegisterFiction 1.085335258 0.9683548671
## 336 Source Book105 RegisterFiction 0.528343404 0.5020631788
## 337 Source Book106 RegisterFiction -1.414936612 -1.4636341163
## 338 Source Book107 RegisterFiction 2.385026383 2.4162805254
## 339 Source Book108 RegisterFiction -0.254858427 -0.2897542642
## 340 Source Book109 RegisterFiction -1.639251448 -1.6754685266
## 341 Source Book11 RegisterFiction -1.905999947 -1.9166676458
## 342 Source Book110 RegisterFiction -0.923834910 -0.8792737269
## 343 Source Book111 RegisterFiction -0.414738013 -0.4400889563
## 344 Source Book112 RegisterFiction -1.307727891 -1.3473686235
## 345 Source Book113 RegisterFiction -0.719533436 -0.6095766483
## 346 Source Book114 RegisterFiction -1.938329658 -1.9851582427
## 347 Source Book115 RegisterFiction 2.380320874 2.5058456508
## 348 Source Book116 RegisterFiction -0.125484803 -0.0017113412
## 349 Source Book117 RegisterFiction -1.789709960 -1.7366462255
## 350 Source Book118 RegisterFiction 1.545705819 1.7034838166
## 351 Source Book119 RegisterFiction 0.684575208 0.7233226820
## 352 Source Book12 RegisterFiction -1.141548753 -1.3006503572
## 353 Source Book120 RegisterFiction -0.116451214 -0.1485777373
## 354 Source Book121 RegisterFiction 1.141904845 1.3019605588
## 355 Source Book122 RegisterFiction -3.031102878 -2.9235024081
## 356 Source Book123 RegisterFiction -0.260398847 -0.2118108671
## 357 Source Book124 RegisterFiction -0.458333960 -0.4852886277
## 358 Source Book125 RegisterFiction 0.540960972 0.6613561411
## 359 Source Book126 RegisterFiction -0.912581918 -0.8793592144
## 360 Source Book127 RegisterFiction -0.680368113 -0.5773455600
## 361 Source Book128 RegisterFiction 0.758661707 0.7917037520
## 362 Source Book129 RegisterFiction 1.453020209 1.5051046459
## 363 Source Book13 RegisterFiction -2.124279051 -2.1163592307
## 364 Source Book130 RegisterFiction -0.089336208 -0.1291263319
## 365 Source Book131 RegisterFiction 0.337628988 0.3222540494
## 366 Source Book132 RegisterFiction -0.812224776 -0.7319011705
## 367 Source Book133 RegisterFiction -0.842528470 -0.7032360401
## 368 Source Book134 RegisterFiction 1.861898709 1.8089844349
## 369 Source Book135 RegisterFiction 0.730600220 0.7968940167
## 370 Source Book136 RegisterFiction 0.665059254 0.8286141985
## 371 Source Book137 RegisterFiction 0.060885397 -0.0169107145
## 372 Source Book138 RegisterFiction -0.798309814 -0.8670134820
## 373 Source Book139 RegisterFiction 0.302583800 0.1901390368
## 374 Source Book14 RegisterFiction -1.347373272 -1.3861262385
## 375 Source Book140 RegisterFiction 0.010465767 -0.0117891020
## 376 Source Book141 RegisterFiction 0.399249657 0.3261482614
## 377 Source Book142 RegisterFiction 0.363038399 0.3428278317
## 378 Source Book143 RegisterFiction 0.613483019 0.5177561918
## 379 Source Book144 RegisterFiction 1.471501235 1.5787794657
## 380 Source Book145 RegisterFiction 0.532560701 0.4606298920
## 381 Source Book146 RegisterFiction -1.072415676 -1.0753823548
## 382 Source Book147 RegisterFiction 0.560985295 0.5891458722
## 383 Source Book148 RegisterFiction 0.020720525 0.1009711284
## 384 Source Book149 RegisterFiction 0.146501327 0.2863369191
## 385 Source Book15 RegisterFiction -1.504913883 -1.4626560244
## 386 Source Book150 RegisterFiction 0.278685677 0.2319628802
## 387 Source Book151 RegisterFiction 0.663172046 0.4448840410
## 388 Source Book152 RegisterFiction 0.792033421 0.8539419253
## 389 Source Book153 RegisterFiction 0.346920036 0.4367068082
## 390 Source Book154 RegisterFiction 0.469874108 0.5059454350
## 391 Source Book155 RegisterFiction 1.861860345 1.8783514442
## 392 Source Book156 RegisterFiction 0.980208260 1.0019920721
## 393 Source Book157 RegisterFiction 0.661108209 0.6420510072
## 394 Source Book158 RegisterFiction 1.505499988 1.4663735629
## 395 Source Book159 RegisterFiction -2.373842412 -2.5184892048
## 396 Source Book16 RegisterFiction 1.065252213 1.0725946324
## 397 Source Book160 RegisterFiction 0.335817199 0.2669864024
## 398 Source Book161 RegisterFiction 0.374243916 0.2860769105
## 399 Source Book162 RegisterFiction 0.322417885 0.3114748141
## 400 Source Book163 RegisterFiction 1.459545664 1.4275619145
## 401 Source Book164 RegisterFiction -1.329162498 -1.4516463111
## 402 Source Book165 RegisterFiction -0.301014741 -0.1851300344
## 403 Source Book166 RegisterFiction 0.108634590 0.0437782472
## 404 Source Book167 RegisterFiction 2.955627071 3.0418410220
## 405 Source Book168 RegisterFiction 0.339143756 0.2227122556
## 406 Source Book169 RegisterFiction -0.542202363 -0.6175202239
## 407 Source Book17 RegisterFiction -2.060801249 -2.0095360651
## 408 Source Book170 RegisterFiction -0.445991243 -0.4346698470
## 409 Source Book171 RegisterFiction -0.369900647 -0.4599116462
## 410 Source Book172 RegisterFiction 0.707584983 0.7128652642
## 411 Source Book173 RegisterFiction -0.354166833 -0.2832460445
## 412 Source Book174 RegisterFiction -2.186332432 -2.2318394384
## 413 Source Book175 RegisterFiction -0.618277190 -0.6731386238
## 414 Source Book176 RegisterFiction -1.225080074 -1.2572659196
## 415 Source Book177 RegisterFiction -3.542686808 -3.5237497530
## 416 Source Book178 RegisterFiction 0.599642436 0.5032452475
## 417 Source Book179 RegisterFiction 0.149426971 0.0027960672
## 418 Source Book18 RegisterFiction -0.935050678 -0.9587588442
## 419 Source Book180 RegisterFiction 1.440218930 1.3325800659
## 420 Source Book181 RegisterFiction 0.727405228 0.7689872732
## 421 Source Book182 RegisterFiction -0.188840855 -0.2311563015
## 422 Source Book183 RegisterFiction 1.163808168 1.1599735288
## 423 Source Book184 RegisterFiction -2.881748135 -3.0107575946
## 424 Source Book185 RegisterFiction 4.164547401 4.1599748421
## 425 Source Book186 RegisterFiction 0.723186995 0.7224302085
## 426 Source Book187 RegisterFiction 0.564965902 0.4965264083
## 427 Source Book188 RegisterFiction -0.849465135 -0.7894323103
## 428 Source Book189 RegisterFiction 0.716385556 0.7811830266
## 429 Source Book19 RegisterFiction 0.448439486 0.5107722393
## 430 Source Book190 RegisterFiction -1.846070614 -1.9141786116
## 431 Source Book191 RegisterFiction 1.572948354 1.7345157824
## 432 Source Book192 RegisterFiction 1.244055268 1.2736703259
## 433 Source Book193 RegisterFiction -0.290874366 -0.2888471810
## 434 Source Book194 RegisterFiction -1.158496832 -1.3318189794
## 435 Source Book195 RegisterFiction 1.244702292 1.2403309435
## 436 Source Book196 RegisterFiction -2.342435611 -2.2080857631
## 437 Source Book197 RegisterFiction -1.050021212 -1.0809624655
## 438 Source Book198 RegisterFiction -0.520602470 -0.4839707475
## 439 Source Book199 RegisterFiction -0.294926085 -0.2509348246
## 440 Source Book2 RegisterFiction 1.514893996 1.5864523790
## 441 Source Book20 RegisterFiction -0.078705047 -0.0885110098
## 442 Source Book200 RegisterFiction 0.025822733 0.1047539391
## 443 Source Book201 RegisterFiction -2.059597379 -2.1702610219
## 444 Source Book202 RegisterFiction 1.120735886 1.1466149078
## 445 Source Book203 RegisterFiction -0.674389375 -0.7165092622
## 446 Source Book204 RegisterFiction 2.225565999 2.2812055819
## 447 Source Book205 RegisterFiction 0.987947315 0.9730338364
## 448 Source Book206 RegisterFiction -1.029730452 -1.0500863919
## 449 Source Book207 RegisterFiction 1.446269971 1.4646102533
## 450 Source Book208 RegisterFiction 0.108470143 0.1729755602
## 451 Source Book209 RegisterFiction 0.960707614 1.0919421622
## 452 Source Book21 RegisterFiction 2.223117712 2.2517281848
## 453 Source Book210 RegisterFiction -0.153979466 -0.0677515690
## 454 Source Book211 RegisterFiction -1.543911341 -1.5184805847
## 455 Source Book212 RegisterFiction 2.176521070 2.3332262580
## 456 Source Book213 RegisterFiction 0.545810522 0.5250095835
## 457 Source Book214 RegisterFiction 0.502977299 0.4676009799
## 458 Source Book215 RegisterFiction 1.049129253 1.1122212273
## 459 Source Book216 RegisterFiction 1.247590415 1.1672170949
## 460 Source Book217 RegisterFiction -2.136711425 -2.2633733542
## 461 Source Book218 RegisterFiction 0.076384899 0.1401575359
## 462 Source Book219 RegisterFiction 0.549937812 0.5381274890
## 463 Source Book22 RegisterFiction -1.243241378 -1.2297800279
## 464 Source Book220 RegisterFiction 1.407888950 1.5619788377
## 465 Source Book221 RegisterFiction 0.469125691 0.4623056681
## 466 Source Book222 RegisterFiction -0.312965177 -0.3896018463
## 467 Source Book223 RegisterFiction -0.180013585 -0.2007342078
## 468 Source Book224 RegisterFiction -0.338617490 -0.3809566179
## 469 Source Book225 RegisterFiction 1.027646785 1.0844464608
## 470 Source Book226 RegisterFiction 1.469034937 1.5624144079
## 471 Source Book227 RegisterFiction 0.804021525 0.6728974344
## 472 Source Book228 RegisterFiction 0.039191363 0.0656075585
## 473 Source Book229 RegisterFiction -1.012909240 -1.0962718531
## 474 Source Book23 RegisterFiction 1.674411270 1.6446997052
## 475 Source Book230 RegisterFiction 2.577285657 2.4830671064
## 476 Source Book231 RegisterFiction -0.271830863 -0.1285163351
## 477 Source Book232 RegisterFiction 1.993287438 1.9151823572
## 478 Source Book233 RegisterFiction -1.440196736 -1.4274817755
## 479 Source Book234 RegisterFiction -0.738555627 -0.8505303636
## 480 Source Book235 RegisterFiction 1.239875854 1.2259590269
## 481 Source Book236 RegisterFiction 0.249486739 0.4608134457
## 482 Source Book237 RegisterFiction 0.175497977 0.2828447411
## 483 Source Book238 RegisterFiction -0.907336630 -0.8221984755
## 484 Source Book239 RegisterFiction 2.083685284 1.8817345456
## 485 Source Book24 RegisterFiction -0.737787318 -0.6614907182
## 486 Source Book240 RegisterFiction -2.681336824 -2.8112678044
## 487 Source Book241 RegisterFiction -2.103951841 -1.9886641305
## 488 Source Book242 RegisterFiction -0.862611674 -0.7610882913
## 489 Source Book243 RegisterFiction -0.777040017 -0.6966335903
## 490 Source Book244 RegisterFiction -0.920885949 -0.8510479290
## 491 Source Book245 RegisterFiction -0.786214877 -0.8294859319
## 492 Source Book246 RegisterFiction 0.293555215 0.3426673025
## 493 Source Book247 RegisterFiction -1.509327582 -1.4237694694
## 494 Source Book248 RegisterFiction -0.853179851 -0.7602229992
## 495 Source Book249 RegisterFiction -0.492187830 -0.4341134575
## 496 Source Book25 RegisterFiction 1.429427418 1.5528454271
## 497 Source Book250 RegisterFiction 0.177909706 0.2746258979
## 498 Source Book251 RegisterFiction 0.385818429 0.5902293781
## 499 Source Book252 RegisterFiction -0.927378147 -0.7911769786
## 500 Source Book253 RegisterFiction 1.952997760 1.9863759265
## 501 Source Book254 RegisterFiction 0.390065157 0.3226687709
## 502 Source Book255 RegisterFiction -4.067293942 -4.0873476608
## 503 Source Book256 RegisterFiction -5.094675824 -4.9778297376
## 504 Source Book257 RegisterFiction 1.004723519 0.9270762573
## 505 Source Book258 RegisterFiction -0.565709822 -0.6462887605
## 506 Source Book259 RegisterFiction -0.386311357 -0.4358840769
## 507 Source Book26 RegisterFiction 2.095354348 1.9615553543
## 508 Source Book260 RegisterFiction 0.877914833 0.9011528779
## 509 Source Book261 RegisterFiction 1.853941816 1.8838344686
## 510 Source Book262 RegisterFiction -1.538718129 -1.4226574580
## 511 Source Book263 RegisterFiction -1.416515137 -1.4630855857
## 512 Source Book264 RegisterFiction -0.235374586 -0.2309292345
## 513 Source Book265 RegisterFiction -1.586766974 -1.4886949619
## 514 Source Book266 RegisterFiction -0.235631690 -0.2857788729
## 515 Source Book267 RegisterFiction -0.107661461 -0.2506554350
## 516 Source Book268 RegisterFiction -0.152311934 -0.1520657654
## 517 Source Book269 RegisterFiction 1.720527403 1.5620599107
## 518 Source Book27 RegisterFiction -2.031142666 -1.9551952149
## 519 Source Book270 RegisterFiction 0.849005998 0.8877737211
## 520 Source Book271 RegisterFiction 1.301488711 1.3262004769
## 521 Source Book272 RegisterFiction 2.126124016 2.0831034378
## 522 Source Book273 RegisterFiction -0.454032041 -0.3043516644
## 523 Source Book274 RegisterFiction 0.113994011 0.1015194677
## 524 Source Book275 RegisterFiction 1.893914627 1.7776873769
## 525 Source Book276 RegisterFiction -0.874524765 -1.0142689896
## 526 Source Book277 RegisterFiction 2.046858294 2.0035161855
## 527 Source Book278 RegisterFiction 0.105722665 0.1195876420
## 528 Source Book279 RegisterFiction -2.783288529 -2.8263304622
## 529 Source Book28 RegisterFiction 1.268216426 1.2888573209
## 530 Source Book280 RegisterFiction 1.384393355 1.2850360227
## 531 Source Book281 RegisterFiction -0.392664524 -0.4466965641
## 532 Source Book282 RegisterFiction 0.334760882 0.3312166376
## 533 Source Book283 RegisterFiction 0.929693414 1.0047933858
## 534 Source Book284 RegisterFiction 0.820778384 0.7425670639
## 535 Source Book285 RegisterFiction 1.164519617 1.2911085770
## 536 Source Book286 RegisterFiction 1.142430820 1.0560648840
## 537 Source Book287 RegisterFiction 2.047105359 1.9771993270
## 538 Source Book288 RegisterFiction 2.001035235 2.0022038896
## 539 Source Book289 RegisterFiction 2.208882966 2.1047934299
## 540 Source Book29 RegisterFiction -1.049558245 -1.0768397984
## 541 Source Book290 RegisterFiction -1.124991565 -1.0534543514
## 542 Source Book291 RegisterFiction 1.256614895 1.3267610572
## 543 Source Book292 RegisterFiction -0.139413137 -0.1744672129
## 544 Source Book293 RegisterFiction -0.148563595 -0.1308432485
## 545 Source Book294 RegisterFiction 0.583451695 0.5943630169
## 546 Source Book295 RegisterFiction -0.781126621 -0.7766302867
## 547 Source Book296 RegisterFiction -2.908534951 -2.8648474238
## 548 Source Book297 RegisterFiction 0.757522937 0.7571049045
## 549 Source Book298 RegisterFiction -0.027129753 0.1254933208
## 550 Source Book299 RegisterFiction 0.118964759 0.1828961926
## 551 Source Book3 RegisterFiction -3.045650553 -3.1324166824
## 552 Source Book30 RegisterFiction 1.967662326 1.8733848462
## 553 Source Book300 RegisterFiction -2.220322131 -2.4048697693
## 554 Source Book31 RegisterFiction -0.150484694 -0.0511806838
## 555 Source Book32 RegisterFiction 1.540840528 1.5072711437
## 556 Source Book33 RegisterFiction 1.247361122 1.2999679224
## 557 Source Book34 RegisterFiction 2.155463150 2.1625382965
## 558 Source Book35 RegisterFiction -0.109406063 -0.2163723768
## 559 Source Book36 RegisterFiction 2.512455767 2.5018335223
## 560 Source Book37 RegisterFiction 1.692640736 1.7301102176
## 561 Source Book38 RegisterFiction -3.115540135 -3.1020614976
## 562 Source Book39 RegisterFiction -1.221683722 -1.1367128761
## 563 Source Book4 RegisterFiction 0.227296305 0.1343842778
## 564 Source Book40 RegisterFiction 0.270323518 0.3779519419
## 565 Source Book41 RegisterFiction -0.504323230 -0.4381386742
## 566 Source Book42 RegisterFiction 0.449140956 0.6413934686
## 567 Source Book43 RegisterFiction 0.443801254 0.5292062666
## 568 Source Book44 RegisterFiction 2.752715154 2.8511202154
## 569 Source Book45 RegisterFiction -1.135703213 -1.2718589940
## 570 Source Book46 RegisterFiction 0.152572936 0.0455088652
## 571 Source Book47 RegisterFiction 0.629358791 0.6168519783
## 572 Source Book48 RegisterFiction -3.189253218 -3.1423129070
## 573 Source Book49 RegisterFiction 1.542253443 1.5674192663
## 574 Source Book5 RegisterFiction 0.399674764 0.3822912127
## 575 Source Book50 RegisterFiction 0.155170083 0.1883050690
## 576 Source Book51 RegisterFiction 0.256952714 0.3113688793
## 577 Source Book52 RegisterFiction -1.781844580 -1.8224892431
## 578 Source Book53 RegisterFiction -0.235519870 -0.3260782696
## 579 Source Book54 RegisterFiction 1.030613123 1.1094657495
## 580 Source Book55 RegisterFiction 0.930143437 1.0003668973
## 581 Source Book56 RegisterFiction -0.116328161 -0.0928404839
## 582 Source Book57 RegisterFiction 0.562382133 0.6208668143
## 583 Source Book58 RegisterFiction -0.049058678 0.0149860780
## 584 Source Book59 RegisterFiction -0.396362185 -0.5361305720
## 585 Source Book6 RegisterFiction -2.471705220 -2.5198452565
## 586 Source Book60 RegisterFiction -1.230782865 -1.3095355665
## 587 Source Book61 RegisterFiction -0.199919685 -0.2967618570
## 588 Source Book62 RegisterFiction -0.087032070 -0.0890034758
## 589 Source Book63 RegisterFiction 0.054054693 0.0408420700
## 590 Source Book64 RegisterFiction -0.753840298 -0.8909210531
## 591 Source Book65 RegisterFiction -0.879325931 -0.8537711863
## 592 Source Book66 RegisterFiction 0.473516513 0.4072965785
## 593 Source Book67 RegisterFiction 0.373115184 0.3636831007
## 594 Source Book68 RegisterFiction 1.192823205 1.0280184810
## 595 Source Book69 RegisterFiction -0.293363639 -0.2480985169
## 596 Source Book7 RegisterFiction 0.419305804 0.5286942671
## 597 Source Book70 RegisterFiction -1.349207115 -1.3410301815
## 598 Source Book71 RegisterFiction -0.168745980 0.0301594389
## 599 Source Book72 RegisterFiction -2.417609595 -2.4756945652
## 600 Source Book73 RegisterFiction 0.620503551 0.5923196402
## 601 Source Book74 RegisterFiction 0.425569957 0.5004781992
## 602 Source Book75 RegisterFiction -0.916026315 -0.9386922263
## 603 Source Book76 RegisterFiction -4.365752898 -4.3605205303
## 604 Source Book77 RegisterFiction -2.217372817 -2.0428505752
## 605 Source Book78 RegisterFiction 2.168691549 2.0372066858
## 606 Source Book79 RegisterFiction -0.139974885 -0.0943833037
## 607 Source Book8 RegisterFiction 0.328967959 0.3376191520
## 608 Source Book80 RegisterFiction 3.233727301 3.1910045647
## 609 Source Book81 RegisterFiction -1.522693102 -1.4443500496
## 610 Source Book82 RegisterFiction 0.242827411 0.2461464625
## 611 Source Book83 RegisterFiction -1.673723924 -1.7206150659
## 612 Source Book84 RegisterFiction 1.017538871 1.0422505739
## 613 Source Book85 RegisterFiction 3.165730063 3.2060538695
## 614 Source Book86 RegisterFiction -0.763484850 -0.6534173174
## 615 Source Book87 RegisterFiction -0.476695629 -0.5320933332
## 616 Source Book88 RegisterFiction -2.698202220 -2.7552692029
## 617 Source Book89 RegisterFiction -1.547059055 -1.5679564313
## 618 Source Book9 RegisterFiction -2.243224670 -2.0939020851
## 619 Source Book90 RegisterFiction 0.624486221 0.6276933155
## 620 Source Book91 RegisterFiction 0.965248785 0.9706480955
## 621 Source Book92 RegisterFiction 1.168286045 1.1282628135
## 622 Source Book93 RegisterFiction 1.724372721 1.7578108165
## 623 Source Book94 RegisterFiction 1.109280843 1.0996704312
## 624 Source Book95 RegisterFiction 0.555373205 0.5176061016
## 625 Source Book96 RegisterFiction 0.109893246 -0.0628141370
## 626 Source Book97 RegisterFiction -3.395423276 -3.3917398859
## 627 Source Book98 RegisterFiction -0.500579612 -0.6915703522
## 628 Source Book99 RegisterFiction 1.102561153 0.9363703092
## 629 Source Dogo RegisterFiction 0.024105546 -0.0905216665
## 630 Source Ducksters RegisterFiction -0.051293010 0.0307933196
## 631 Source EIM RegisterFiction 0.379406682 0.3333117095
## 632 Source Encyclopedia RegisterFiction -0.034911167 -0.1754909492
## 633 Source Factmonster RegisterFiction 0.068461356 0.0583854096
## 634 Source GreenLine RegisterFiction 0.448104515 0.4065345410
## 635 Source History RegisterFiction -0.002088087 -0.0117365673
## 636 Source HT RegisterFiction 2.201912843 2.2396814032
## 637 Source JTT RegisterFiction 0.449298491 0.4503472951
## 638 Source NGL RegisterFiction 0.065196529 0.0521157179
## 639 Source POC RegisterFiction -2.014945888 -2.0426152019
## 640 Source Quatr RegisterFiction -0.056850064 -0.1787906114
## 641 Source Revision RegisterFiction 0.025709758 0.0557665690
## 642 Source Science RegisterFiction -0.060085247 0.0334879266
## 643 Source Science_Tech RegisterFiction -0.272341534 -0.2400828355
## 644 Source Solutions RegisterFiction -1.389597757 -1.4374073276
## 645 Source Spoken.BNC2014 RegisterFiction -0.048263972 0.0803612517
## 646 Source Teen RegisterFiction -0.046937374 -0.0311426439
## 647 Source TeenVogue RegisterFiction -0.078097584 -0.0157168380
## 648 Source TweenTribute RegisterFiction 0.050077106 0.0415585956
## 649 Source WhyFiles RegisterFiction 0.082955835 0.0677263423
## 650 Source World RegisterFiction -0.023734621 -0.0289361611
## 651 Source Access RegisterInformative -0.586654662 -0.5888683155
## 652 Source Achievers RegisterInformative 3.387669906 3.2951826038
## 653 Source BBC RegisterInformative -0.894887336 -0.8281678389
## 654 Source Book1 RegisterInformative -0.296831744 -0.3338441483
## 655 Source Book10 RegisterInformative 0.129854095 0.1801727759
## 656 Source Book100 RegisterInformative 0.600669104 0.5448269800
## 657 Source Book101 RegisterInformative -0.010261289 -0.1423440872
## 658 Source Book102 RegisterInformative 0.255136600 0.2127305938
## 659 Source Book103 RegisterInformative -0.291153516 -0.2448641594
## 660 Source Book104 RegisterInformative -0.355974114 -0.3189519241
## 661 Source Book105 RegisterInformative -0.057715170 -0.1660538605
## 662 Source Book106 RegisterInformative 0.236647164 0.2214550401
## 663 Source Book107 RegisterInformative -0.586713709 -0.6888558980
## 664 Source Book108 RegisterInformative 0.101763236 0.1491118152
## 665 Source Book109 RegisterInformative 0.291003947 0.2938612295
## 666 Source Book11 RegisterInformative 0.577781163 0.5539261453
## 667 Source Book110 RegisterInformative 0.367512067 0.4237629654
## 668 Source Book111 RegisterInformative 0.087278769 0.1260849507
## 669 Source Book112 RegisterInformative 0.359216663 0.3897668055
## 670 Source Book113 RegisterInformative 0.340853013 0.4067779028
## 671 Source Book114 RegisterInformative 0.460147255 0.5509998266
## 672 Source Book115 RegisterInformative -0.641886899 -0.5953740220
## 673 Source Book116 RegisterInformative 0.067892291 0.0938076552
## 674 Source Book117 RegisterInformative 0.551234315 0.5105852139
## 675 Source Book118 RegisterInformative -0.328151151 -0.3494809535
## 676 Source Book119 RegisterInformative -0.175689489 -0.1101259360
## 677 Source Book12 RegisterInformative 0.295624563 0.2352338151
## 678 Source Book120 RegisterInformative -0.130505761 -0.0469376605
## 679 Source Book121 RegisterInformative -0.326069380 -0.3995754576
## 680 Source Book122 RegisterInformative 0.548793267 0.6415792385
## 681 Source Book123 RegisterInformative 0.035161918 -0.0601776814
## 682 Source Book124 RegisterInformative 0.217356598 0.2219241741
## 683 Source Book125 RegisterInformative -0.103880241 -0.0906938985
## 684 Source Book126 RegisterInformative 0.236694451 0.0820356714
## 685 Source Book127 RegisterInformative 0.189259119 0.1620584765
## 686 Source Book128 RegisterInformative -0.277754000 -0.2051464909
## 687 Source Book129 RegisterInformative -0.367848798 -0.4546914388
## 688 Source Book13 RegisterInformative 0.480682224 0.4401594214
## 689 Source Book130 RegisterInformative 0.067439397 0.1101293361
## 690 Source Book131 RegisterInformative -0.135660577 -0.1239422400
## 691 Source Book132 RegisterInformative 0.265590385 0.2621687867
## 692 Source Book133 RegisterInformative 0.417806790 0.4856450898
## 693 Source Book134 RegisterInformative -0.564714933 -0.5718408076
## 694 Source Book135 RegisterInformative -0.417164264 -0.4107774589
## 695 Source Book136 RegisterInformative -0.245261223 -0.3176702621
## 696 Source Book137 RegisterInformative 0.039686364 0.0316267326
## 697 Source Book138 RegisterInformative 0.230216244 0.2818620971
## 698 Source Book139 RegisterInformative -0.109195838 -0.1030147559
## 699 Source Book14 RegisterInformative 0.348389889 0.3987786309
## 700 Source Book140 RegisterInformative -0.091023882 0.0178726081
## 701 Source Book141 RegisterInformative -0.022600837 -0.0001478081
## 702 Source Book142 RegisterInformative -0.073373262 0.0526969951
## 703 Source Book143 RegisterInformative -0.102428269 -0.2142168866
## 704 Source Book144 RegisterInformative -0.190380911 -0.1251433966
## 705 Source Book145 RegisterInformative -0.057696497 -0.1078991984
## 706 Source Book146 RegisterInformative 0.263600785 0.2428673892
## 707 Source Book147 RegisterInformative -0.068486530 -0.0437610483
## 708 Source Book148 RegisterInformative -0.011878464 -0.0827891507
## 709 Source Book149 RegisterInformative -0.033362047 0.0197688766
## 710 Source Book15 RegisterInformative 0.336418217 0.3734146707
## 711 Source Book150 RegisterInformative 0.030841406 -0.0737983866
## 712 Source Book151 RegisterInformative -0.126354095 -0.0546546802
## 713 Source Book152 RegisterInformative -0.206284402 -0.2333374780
## 714 Source Book153 RegisterInformative 0.113899073 0.1040085345
## 715 Source Book154 RegisterInformative -0.096681990 -0.0799895406
## 716 Source Book155 RegisterInformative -0.464722040 -0.4249196494
## 717 Source Book156 RegisterInformative -0.326390558 -0.3066047865
## 718 Source Book157 RegisterInformative -0.242966610 -0.2322987821
## 719 Source Book158 RegisterInformative -0.276459045 -0.3808227571
## 720 Source Book159 RegisterInformative 0.706020326 0.7931062366
## 721 Source Book16 RegisterInformative -0.171668207 -0.2144628428
## 722 Source Book160 RegisterInformative 0.009286506 -0.0255946508
## 723 Source Book161 RegisterInformative -0.151672158 -0.1183863401
## 724 Source Book162 RegisterInformative -0.062205590 -0.1240643327
## 725 Source Book163 RegisterInformative -0.408986571 -0.3703912438
## 726 Source Book164 RegisterInformative 0.270698635 0.2089918053
## 727 Source Book165 RegisterInformative 0.114350344 0.0483711140
## 728 Source Book166 RegisterInformative -0.002040982 0.0123163607
## 729 Source Book167 RegisterInformative -0.817687871 -0.7505426685
## 730 Source Book168 RegisterInformative -0.057005130 -0.0657288723
## 731 Source Book169 RegisterInformative 0.205485703 0.1834146258
## 732 Source Book17 RegisterInformative 0.602996015 0.6994597664
## 733 Source Book170 RegisterInformative -0.030095767 -0.1383531700
## 734 Source Book171 RegisterInformative 0.070787403 -0.0063666508
## 735 Source Book172 RegisterInformative -0.020740301 -0.0333092595
## 736 Source Book173 RegisterInformative 0.152419592 0.0623252101
## 737 Source Book174 RegisterInformative 0.621488335 0.6740937812
## 738 Source Book175 RegisterInformative 0.180936961 0.2671710734
## 739 Source Book176 RegisterInformative 0.356829496 0.3964038872
## 740 Source Book177 RegisterInformative 1.046428401 1.1170054190
## 741 Source Book178 RegisterInformative -0.052349515 -0.1386477901
## 742 Source Book179 RegisterInformative 0.140104791 0.2117126118
## 743 Source Book18 RegisterInformative 0.106132638 0.1385068769
## 744 Source Book180 RegisterInformative -0.374541636 -0.3028550357
## 745 Source Book181 RegisterInformative -0.219030913 -0.2041107869
## 746 Source Book182 RegisterInformative -0.026714600 -0.0615882712
## 747 Source Book183 RegisterInformative -0.315645129 -0.3511216160
## 748 Source Book184 RegisterInformative 0.637604478 0.6918733371
## 749 Source Book185 RegisterInformative -1.044484637 -1.0050679535
## 750 Source Book186 RegisterInformative -0.223694472 -0.1994080311
## 751 Source Book187 RegisterInformative -0.172334255 -0.1331500572
## 752 Source Book188 RegisterInformative 0.215263733 0.2180386420
## 753 Source Book189 RegisterInformative -0.189420843 -0.2303830893
## 754 Source Book19 RegisterInformative -0.176808256 -0.2475001130
## 755 Source Book190 RegisterInformative 0.433579224 0.4356832720
## 756 Source Book191 RegisterInformative -0.467692362 -0.4275883090
## 757 Source Book192 RegisterInformative -0.412487504 -0.5119842835
## 758 Source Book193 RegisterInformative 0.114921695 0.0202997366
## 759 Source Book194 RegisterInformative 0.316877356 0.3299754704
## 760 Source Book195 RegisterInformative -0.198849186 -0.2401340557
## 761 Source Book196 RegisterInformative 0.800950193 0.7221514299
## 762 Source Book197 RegisterInformative 0.388811033 0.4002308057
## 763 Source Book198 RegisterInformative 0.143651850 0.2216239734
## 764 Source Book199 RegisterInformative 0.156792198 0.0583332963
## 765 Source Book2 RegisterInformative -0.369336866 -0.3686292326
## 766 Source Book20 RegisterInformative -0.088674710 -0.1054730146
## 767 Source Book200 RegisterInformative -0.117902107 -0.1468709272
## 768 Source Book201 RegisterInformative 0.497975492 0.4817895733
## 769 Source Book202 RegisterInformative -0.307241844 -0.4097631949
## 770 Source Book203 RegisterInformative 0.285321641 0.3913446955
## 771 Source Book204 RegisterInformative -0.569034892 -0.6929099423
## 772 Source Book205 RegisterInformative -0.253752406 -0.2889909149
## 773 Source Book206 RegisterInformative 0.246914775 0.2297869747
## 774 Source Book207 RegisterInformative -0.529418409 -0.5295690315
## 775 Source Book208 RegisterInformative -0.015084267 -0.0805088481
## 776 Source Book209 RegisterInformative -0.170795047 -0.2533710427
## 777 Source Book21 RegisterInformative -0.558706100 -0.5155493064
## 778 Source Book210 RegisterInformative -0.037654091 -0.0207252721
## 779 Source Book211 RegisterInformative 0.565701864 0.5029241101
## 780 Source Book212 RegisterInformative -0.588445538 -0.5899780316
## 781 Source Book213 RegisterInformative -0.026384810 0.0037018695
## 782 Source Book214 RegisterInformative -0.058153580 -0.1100722747
## 783 Source Book215 RegisterInformative -0.317432801 -0.3760263936
## 784 Source Book216 RegisterInformative -0.343534340 -0.3934198842
## 785 Source Book217 RegisterInformative 0.462377551 0.4517637463
## 786 Source Book218 RegisterInformative -0.200315938 -0.1993501469
## 787 Source Book219 RegisterInformative -0.068176436 -0.1946953933
## 788 Source Book22 RegisterInformative 0.398204708 0.3232945565
## 789 Source Book220 RegisterInformative -0.409323693 -0.4727785692
## 790 Source Book221 RegisterInformative -0.032602264 0.0100616042
## 791 Source Book222 RegisterInformative 0.103149242 0.0901158314
## 792 Source Book223 RegisterInformative -0.028535880 -0.0929941408
## 793 Source Book224 RegisterInformative 0.130904934 0.1741160069
## 794 Source Book225 RegisterInformative -0.265730642 -0.2206717935
## 795 Source Book226 RegisterInformative -0.376007056 -0.4016700776
## 796 Source Book227 RegisterInformative -0.071117675 0.0346809555
## 797 Source Book228 RegisterInformative 0.020341639 -0.0678769950
## 798 Source Book229 RegisterInformative 0.324072953 0.2716720505
## 799 Source Book23 RegisterInformative -0.332178942 -0.4648207727
## 800 Source Book230 RegisterInformative -0.730137115 -0.7994106204
## 801 Source Book231 RegisterInformative 0.054129399 0.0826036551
## 802 Source Book232 RegisterInformative -0.553390837 -0.5559228706
## 803 Source Book233 RegisterInformative 0.432684066 0.3988676149
## 804 Source Book234 RegisterInformative 0.172859144 0.1830600094
## 805 Source Book235 RegisterInformative -0.178747061 -0.1548455627
## 806 Source Book236 RegisterInformative -0.146275751 -0.2505678685
## 807 Source Book237 RegisterInformative -0.073606466 -0.1169048910
## 808 Source Book238 RegisterInformative 0.214216183 0.3245141395
## 809 Source Book239 RegisterInformative -0.505819071 -0.3609925462
## 810 Source Book24 RegisterInformative 0.140800737 0.0371412786
## 811 Source Book240 RegisterInformative 0.632422646 0.6159387902
## 812 Source Book241 RegisterInformative 0.698280523 0.6682280171
## 813 Source Book242 RegisterInformative 0.144800294 -0.0288934246
## 814 Source Book243 RegisterInformative 0.315690265 0.3309752457
## 815 Source Book244 RegisterInformative 0.326260666 0.3716128058
## 816 Source Book245 RegisterInformative 0.233307844 0.2537742074
## 817 Source Book246 RegisterInformative -0.111671903 -0.1918149464
## 818 Source Book247 RegisterInformative 0.339535151 0.3789258029
## 819 Source Book248 RegisterInformative 0.149795610 0.1290999875
## 820 Source Book249 RegisterInformative 0.282678383 0.2396347779
## 821 Source Book25 RegisterInformative -0.411806807 -0.6018089198
## 822 Source Book250 RegisterInformative -0.002476937 0.0342979712
## 823 Source Book251 RegisterInformative -0.301982190 -0.3532201043
## 824 Source Book252 RegisterInformative 0.116714681 0.0542022239
## 825 Source Book253 RegisterInformative -0.519693669 -0.4898525660
## 826 Source Book254 RegisterInformative -0.016605575 0.0579875529
## 827 Source Book255 RegisterInformative 1.163870722 1.2446403876
## 828 Source Book256 RegisterInformative 1.380954589 1.3150608242
## 829 Source Book257 RegisterInformative -0.253301011 -0.2508771350
## 830 Source Book258 RegisterInformative 0.064658404 0.0257129490
## 831 Source Book259 RegisterInformative 0.173640687 0.1564249980
## 832 Source Book26 RegisterInformative -0.696317750 -0.6189534363
## 833 Source Book260 RegisterInformative -0.317794462 -0.3908202560
## 834 Source Book261 RegisterInformative -0.583059855 -0.4573539764
## 835 Source Book262 RegisterInformative 0.252357688 0.1082953628
## 836 Source Book263 RegisterInformative 0.360565376 0.5222828459
## 837 Source Book264 RegisterInformative 0.188547022 0.3025145995
## 838 Source Book265 RegisterInformative 0.285847209 0.2435917476
## 839 Source Book266 RegisterInformative -0.039810953 -0.0764226921
## 840 Source Book267 RegisterInformative 0.014239054 0.1410894428
## 841 Source Book268 RegisterInformative -0.038252000 -0.1269129338
## 842 Source Book269 RegisterInformative -0.449482657 -0.4744849502
## 843 Source Book27 RegisterInformative 0.471659629 0.5047098009
## 844 Source Book270 RegisterInformative -0.212769875 -0.2382297861
## 845 Source Book271 RegisterInformative -0.257662381 -0.2782103736
## 846 Source Book272 RegisterInformative -0.568486137 -0.5711427403
## 847 Source Book273 RegisterInformative 0.215316839 0.1605455667
## 848 Source Book274 RegisterInformative -0.020146697 -0.1338797820
## 849 Source Book275 RegisterInformative -0.529478831 -0.4114230066
## 850 Source Book276 RegisterInformative 0.293083948 0.3131659368
## 851 Source Book277 RegisterInformative -0.547745671 -0.4682954533
## 852 Source Book278 RegisterInformative -0.073014646 -0.1043987250
## 853 Source Book279 RegisterInformative 0.770366931 0.7195963940
## 854 Source Book28 RegisterInformative -0.275002347 -0.2182289059
## 855 Source Book280 RegisterInformative -0.254695701 -0.1492071126
## 856 Source Book281 RegisterInformative 0.139945352 0.1203872953
## 857 Source Book282 RegisterInformative -0.115811881 -0.1373990249
## 858 Source Book283 RegisterInformative -0.220688225 -0.1284529760
## 859 Source Book284 RegisterInformative -0.368758514 -0.4376635793
## 860 Source Book285 RegisterInformative -0.299719339 -0.3580770481
## 861 Source Book286 RegisterInformative -0.488295649 -0.6773532856
## 862 Source Book287 RegisterInformative -0.556622899 -0.6169587708
## 863 Source Book288 RegisterInformative -0.570051958 -0.4962334415
## 864 Source Book289 RegisterInformative -0.653694286 -0.5609440298
## 865 Source Book29 RegisterInformative 0.315056834 0.2607948010
## 866 Source Book290 RegisterInformative 0.247248253 0.2669890131
## 867 Source Book291 RegisterInformative -0.339944491 -0.3474690011
## 868 Source Book292 RegisterInformative 0.054121154 0.0333260321
## 869 Source Book293 RegisterInformative 0.019496588 0.0861540317
## 870 Source Book294 RegisterInformative -0.056385654 0.0588171554
## 871 Source Book295 RegisterInformative 0.258851665 0.2754724765
## 872 Source Book296 RegisterInformative 0.721187704 0.7812527501
## 873 Source Book297 RegisterInformative -0.140926968 -0.2147648784
## 874 Source Book298 RegisterInformative -0.023459196 0.0401705837
## 875 Source Book299 RegisterInformative -0.149409642 -0.1801014288
## 876 Source Book3 RegisterInformative 0.850250520 0.8273770830
## 877 Source Book30 RegisterInformative -0.649777076 -0.7073282678
## 878 Source Book300 RegisterInformative 0.597208363 0.6066022234
## 879 Source Book31 RegisterInformative 0.136264794 0.1872538564
## 880 Source Book32 RegisterInformative -0.353577006 -0.4823086434
## 881 Source Book33 RegisterInformative -0.438063876 -0.5671120202
## 882 Source Book34 RegisterInformative -0.557544768 -0.5312430832
## 883 Source Book35 RegisterInformative 0.211424244 0.3076670496
## 884 Source Book36 RegisterInformative -0.519379164 -0.4948779098
## 885 Source Book37 RegisterInformative -0.339791492 -0.3311571144
## 886 Source Book38 RegisterInformative 0.832492768 0.8839003385
## 887 Source Book39 RegisterInformative 0.247932756 0.1328302344
## 888 Source Book4 RegisterInformative -0.117814626 -0.1135398414
## 889 Source Book40 RegisterInformative -0.002309198 -0.0396364411
## 890 Source Book41 RegisterInformative -0.016069474 0.0454374031
## 891 Source Book42 RegisterInformative -0.043789495 -0.1113775198
## 892 Source Book43 RegisterInformative -0.067734995 -0.0884226553
## 893 Source Book44 RegisterInformative -0.706053200 -0.7369427849
## 894 Source Book45 RegisterInformative 0.470863563 0.5124665466
## 895 Source Book46 RegisterInformative -0.059754928 -0.0779050063
## 896 Source Book47 RegisterInformative -0.210873793 -0.1977215397
## 897 Source Book48 RegisterInformative 0.861093842 0.7559270014
## 898 Source Book49 RegisterInformative -0.483583710 -0.4983115044
## 899 Source Book5 RegisterInformative -0.102770159 -0.1772189070
## 900 Source Book50 RegisterInformative -0.051715501 -0.1273257395
## 901 Source Book51 RegisterInformative -0.059130650 -0.0586517909
## 902 Source Book52 RegisterInformative 0.459122872 0.3759739676
## 903 Source Book53 RegisterInformative -0.068010764 -0.1630077181
## 904 Source Book54 RegisterInformative -0.330142147 -0.3536237984
## 905 Source Book55 RegisterInformative -0.308960951 -0.3600826691
## 906 Source Book56 RegisterInformative 0.002846205 0.0154659620
## 907 Source Book57 RegisterInformative -0.058796612 -0.1349012113
## 908 Source Book58 RegisterInformative -0.031844143 -0.0779926998
## 909 Source Book59 RegisterInformative 0.214824912 0.3625304017
## 910 Source Book6 RegisterInformative 0.635949600 0.5853487310
## 911 Source Book60 RegisterInformative 0.498094686 0.6229964346
## 912 Source Book61 RegisterInformative 0.081960431 0.1170187586
## 913 Source Book62 RegisterInformative -0.075455073 -0.1211639689
## 914 Source Book63 RegisterInformative -0.135224779 -0.0375457615
## 915 Source Book64 RegisterInformative 0.185796574 0.1493612038
## 916 Source Book65 RegisterInformative 0.198926857 0.2641437991
## 917 Source Book66 RegisterInformative -0.069080632 0.0188153927
## 918 Source Book67 RegisterInformative -0.026187627 -0.0160995970
## 919 Source Book68 RegisterInformative -0.309803624 -0.3482745824
## 920 Source Book69 RegisterInformative 0.045627158 0.1083237727
## 921 Source Book7 RegisterInformative -0.080986058 -0.0272586912
## 922 Source Book70 RegisterInformative 0.295907655 0.3471591364
## 923 Source Book71 RegisterInformative 0.044373477 -0.0737360709
## 924 Source Book72 RegisterInformative 0.441358512 0.3107308300
## 925 Source Book73 RegisterInformative -0.272615236 -0.2785027784
## 926 Source Book74 RegisterInformative -0.136613370 -0.2972280046
## 927 Source Book75 RegisterInformative 0.136283059 0.0881998425
## 928 Source Book76 RegisterInformative 1.212224310 1.1458100349
## 929 Source Book77 RegisterInformative 0.632082990 0.6941452902
## 930 Source Book78 RegisterInformative -0.539320837 -0.4143147924
## 931 Source Book79 RegisterInformative 0.179109135 0.1682957011
## 932 Source Book8 RegisterInformative -0.245201264 -0.1734773436
## 933 Source Book80 RegisterInformative -0.820831059 -0.8107559995
## 934 Source Book81 RegisterInformative 0.327908082 0.2591047821
## 935 Source Book82 RegisterInformative -0.099982602 -0.1381288263
## 936 Source Book83 RegisterInformative 0.370163293 0.3981030756
## 937 Source Book84 RegisterInformative -0.318536462 -0.2522495068
## 938 Source Book85 RegisterInformative -0.754756418 -0.7559486923
## 939 Source Book86 RegisterInformative 0.208454708 0.1890697241
## 940 Source Book87 RegisterInformative 0.229617397 0.1343008796
## 941 Source Book88 RegisterInformative 0.635793593 0.5436905777
## 942 Source Book89 RegisterInformative 0.464030314 0.5084559112
## 943 Source Book9 RegisterInformative 0.657754833 0.6539115902
## 944 Source Book90 RegisterInformative -0.137134179 -0.0893880420
## 945 Source Book91 RegisterInformative -0.222622976 -0.1744997842
## 946 Source Book92 RegisterInformative -0.248724413 -0.1322318275
## 947 Source Book93 RegisterInformative -0.385023618 -0.4771781856
## 948 Source Book94 RegisterInformative -0.262736521 -0.3246328159
## 949 Source Book95 RegisterInformative -0.208486458 -0.1274984683
## 950 Source Book96 RegisterInformative -0.055337345 -0.1356168133
## 951 Source Book97 RegisterInformative 0.934099190 0.9209802723
## 952 Source Book98 RegisterInformative 0.280051754 0.2491097030
## 953 Source Book99 RegisterInformative -0.317900168 -0.3044575383
## 954 Source Dogo RegisterInformative -0.670391695 -0.7496301170
## 955 Source Ducksters RegisterInformative -1.743683603 -1.7729557246
## 956 Source EIM RegisterInformative 1.237321949 1.1749446823
## 957 Source Encyclopedia RegisterInformative -0.468485018 -0.4884756132
## 958 Source Factmonster RegisterInformative -3.550203181 -3.4712782120
## 959 Source GreenLine RegisterInformative 1.067112590 1.0157536622
## 960 Source History RegisterInformative -1.386587783 -1.3985205183
## 961 Source HT RegisterInformative -4.275797965 -4.3110539287
## 962 Source JTT RegisterInformative -2.999644056 -3.0520810724
## 963 Source NGL RegisterInformative -0.853514790 -0.8024717043
## 964 Source POC RegisterInformative 0.475832662 0.5308849098
## 965 Source Quatr RegisterInformative 0.458318078 0.4318709564
## 966 Source Revision RegisterInformative 0.210556674 0.2278987316
## 967 Source Science RegisterInformative 0.065236175 0.0897473194
## 968 Source Science_Tech RegisterInformative -0.178925983 -0.0795799547
## 969 Source Solutions RegisterInformative 2.480714848 2.5009172615
## 970 Source Spoken.BNC2014 RegisterInformative 0.075535409 0.0414710534
## 971 Source Teen RegisterInformative 2.751041458 2.8125067256
## 972 Source TeenVogue RegisterInformative 3.325165816 3.3345910043
## 973 Source TweenTribute RegisterInformative 1.878663801 1.8220531648
## 974 Source WhyFiles RegisterInformative 0.783654727 0.7160627460
## 975 Source World RegisterInformative -0.408280104 -0.2881024798
## sd
## 1 1.290196
## 2 1.359719
## 3 2.510588
## 4 2.009644
## 5 2.005272
## 6 1.971217
## 7 2.115101
## 8 2.048888
## 9 2.016616
## 10 2.033484
## 11 2.028153
## 12 2.080875
## 13 2.025305
## 14 1.960662
## 15 1.969154
## 16 1.997946
## 17 1.941083
## 18 2.005896
## 19 2.074364
## 20 1.955372
## 21 2.044805
## 22 2.009814
## 23 2.097194
## 24 2.044394
## 25 2.047731
## 26 2.016328
## 27 2.167799
## 28 2.011712
## 29 2.044992
## 30 1.976326
## 31 2.026344
## 32 1.949097
## 33 1.942944
## 34 2.011134
## 35 2.064394
## 36 1.892210
## 37 2.099910
## 38 2.055091
## 39 2.021516
## 40 2.089210
## 41 2.047276
## 42 1.920610
## 43 2.084027
## 44 2.051698
## 45 2.061696
## 46 2.029176
## 47 1.946341
## 48 2.060504
## 49 2.034451
## 50 2.068533
## 51 2.049414
## 52 1.912158
## 53 2.049152
## 54 2.051001
## 55 2.050117
## 56 2.040027
## 57 2.112108
## 58 2.100282
## 59 1.950367
## 60 2.048373
## 61 1.983745
## 62 1.995542
## 63 1.963661
## 64 2.070975
## 65 2.024492
## 66 2.088109
## 67 1.971763
## 68 1.952851
## 69 2.042823
## 70 2.123959
## 71 2.042184
## 72 2.100306
## 73 2.092798
## 74 1.986585
## 75 2.002818
## 76 2.038192
## 77 1.947067
## 78 2.000182
## 79 2.005480
## 80 2.036312
## 81 1.958125
## 82 2.034941
## 83 2.050019
## 84 1.976223
## 85 1.934188
## 86 1.959658
## 87 2.025181
## 88 2.051625
## 89 2.069451
## 90 2.035398
## 91 1.970898
## 92 2.025794
## 93 1.914719
## 94 1.943866
## 95 2.045348
## 96 2.110767
## 97 2.079281
## 98 2.101888
## 99 1.999373
## 100 2.067583
## 101 2.005627
## 102 2.035437
## 103 2.017328
## 104 2.068789
## 105 2.046501
## 106 2.069348
## 107 1.998190
## 108 1.999178
## 109 2.106439
## 110 2.005990
## 111 1.943112
## 112 2.062106
## 113 1.977453
## 114 2.044890
## 115 1.916464
## 116 2.013834
## 117 2.028857
## 118 1.896021
## 119 1.862892
## 120 2.048383
## 121 2.162567
## 122 1.970734
## 123 2.004845
## 124 1.993258
## 125 2.004763
## 126 1.994322
## 127 1.996041
## 128 2.034655
## 129 2.062160
## 130 2.055643
## 131 2.039483
## 132 1.911981
## 133 2.000252
## 134 2.119595
## 135 1.904832
## 136 2.104795
## 137 1.923315
## 138 2.040870
## 139 1.899731
## 140 2.075167
## 141 2.090183
## 142 2.020349
## 143 1.882679
## 144 1.988483
## 145 1.861661
## 146 2.029946
## 147 1.971002
## 148 2.089888
## 149 2.107564
## 150 2.077047
## 151 2.002007
## 152 2.043856
## 153 1.989553
## 154 2.008169
## 155 2.087345
## 156 1.963013
## 157 2.131638
## 158 2.067822
## 159 2.873881
## 160 2.113750
## 161 2.045114
## 162 2.048263
## 163 2.028369
## 164 2.002591
## 165 1.933058
## 166 2.095563
## 167 1.958060
## 168 2.039769
## 169 2.058966
## 170 2.092580
## 171 2.134106
## 172 1.944146
## 173 1.966949
## 174 2.039747
## 175 2.013729
## 176 2.072513
## 177 2.028496
## 178 2.026584
## 179 2.061238
## 180 1.923340
## 181 2.126789
## 182 2.134291
## 183 1.991895
## 184 1.965668
## 185 2.958981
## 186 2.065338
## 187 1.907228
## 188 1.964171
## 189 2.030547
## 190 3.033967
## 191 2.078220
## 192 1.954203
## 193 1.943176
## 194 1.952785
## 195 2.054621
## 196 2.143379
## 197 2.081906
## 198 1.967058
## 199 2.047059
## 200 1.983262
## 201 1.986814
## 202 1.993058
## 203 2.064306
## 204 2.055255
## 205 2.092959
## 206 2.090873
## 207 2.044723
## 208 1.923282
## 209 2.097893
## 210 2.082091
## 211 2.142074
## 212 2.095931
## 213 2.015362
## 214 2.020303
## 215 2.009579
## 216 2.026344
## 217 2.028198
## 218 2.004641
## 219 2.018059
## 220 2.034653
## 221 2.059102
## 222 2.124875
## 223 1.961029
## 224 2.071815
## 225 1.995713
## 226 2.116482
## 227 1.940377
## 228 2.007999
## 229 2.073191
## 230 2.040412
## 231 2.024606
## 232 1.987063
## 233 2.010875
## 234 2.024049
## 235 1.950578
## 236 2.004324
## 237 2.048674
## 238 2.031659
## 239 2.007426
## 240 2.059055
## 241 2.016101
## 242 1.931302
## 243 2.029270
## 244 1.975436
## 245 2.088698
## 246 2.037077
## 247 2.010427
## 248 1.970136
## 249 1.975429
## 250 1.978255
## 251 2.031361
## 252 2.098680
## 253 1.935349
## 254 2.020143
## 255 2.012662
## 256 1.949487
## 257 1.833694
## 258 1.964397
## 259 1.989521
## 260 2.034588
## 261 1.981868
## 262 2.124144
## 263 2.018369
## 264 1.884384
## 265 1.980487
## 266 1.988142
## 267 2.093288
## 268 1.878200
## 269 1.977295
## 270 1.967987
## 271 2.022501
## 272 1.891477
## 273 2.013864
## 274 1.907055
## 275 1.953401
## 276 1.938692
## 277 2.013092
## 278 1.994753
## 279 1.901902
## 280 1.989799
## 281 1.946057
## 282 1.992655
## 283 2.191434
## 284 2.037295
## 285 2.118522
## 286 1.963641
## 287 1.913415
## 288 1.964788
## 289 2.116387
## 290 1.998107
## 291 1.935369
## 292 2.038261
## 293 2.064849
## 294 2.175006
## 295 2.041414
## 296 1.964980
## 297 1.999206
## 298 2.037626
## 299 2.068411
## 300 2.045083
## 301 1.984966
## 302 2.073331
## 303 1.984694
## 304 2.428503
## 305 2.467283
## 306 1.484947
## 307 2.628259
## 308 2.441499
## 309 1.266452
## 310 2.520937
## 311 1.356217
## 312 1.330515
## 313 1.227540
## 314 1.651448
## 315 2.487183
## 316 2.432468
## 317 2.495821
## 318 2.545252
## 319 1.438225
## 320 3.958293
## 321 2.573778
## 322 2.503836
## 323 2.496813
## 324 2.613186
## 325 2.483875
## 326 1.193953
## 327 1.176907
## 328 2.191723
## 329 2.424384
## 330 2.521844
## 331 2.532945
## 332 2.552927
## 333 2.482091
## 334 2.604573
## 335 2.521811
## 336 2.513247
## 337 2.562089
## 338 2.529070
## 339 2.571434
## 340 2.566226
## 341 2.580555
## 342 2.564732
## 343 2.461038
## 344 2.617011
## 345 2.618553
## 346 2.433620
## 347 2.643146
## 348 2.602245
## 349 2.634059
## 350 2.517544
## 351 2.522118
## 352 2.596053
## 353 2.523319
## 354 2.554009
## 355 2.497908
## 356 2.489962
## 357 2.526359
## 358 2.666859
## 359 2.592212
## 360 2.464549
## 361 2.510704
## 362 2.585931
## 363 2.588038
## 364 2.569089
## 365 2.412895
## 366 2.725195
## 367 2.548240
## 368 2.637522
## 369 2.554894
## 370 2.489182
## 371 2.626007
## 372 2.620306
## 373 2.499348
## 374 2.536720
## 375 2.636109
## 376 2.539037
## 377 2.545811
## 378 2.530222
## 379 2.639541
## 380 2.634990
## 381 2.630686
## 382 2.592456
## 383 2.713891
## 384 2.535931
## 385 2.571295
## 386 2.481119
## 387 2.573297
## 388 2.768981
## 389 2.552295
## 390 2.557531
## 391 2.511359
## 392 2.545022
## 393 2.574046
## 394 2.511111
## 395 2.580591
## 396 2.683785
## 397 2.556316
## 398 2.541367
## 399 2.480745
## 400 2.434755
## 401 2.536563
## 402 2.782917
## 403 2.558605
## 404 2.692531
## 405 2.527517
## 406 2.592625
## 407 2.561296
## 408 2.432452
## 409 2.596429
## 410 2.491955
## 411 2.537090
## 412 2.428173
## 413 2.595577
## 414 2.511041
## 415 2.415213
## 416 2.676048
## 417 2.436148
## 418 2.550238
## 419 2.568701
## 420 2.585552
## 421 2.702124
## 422 2.568922
## 423 2.630112
## 424 2.513170
## 425 2.566208
## 426 2.531783
## 427 2.716950
## 428 2.449182
## 429 2.490702
## 430 2.499390
## 431 2.659461
## 432 2.696999
## 433 2.486327
## 434 2.751133
## 435 2.543737
## 436 2.458533
## 437 2.454571
## 438 2.462556
## 439 2.520118
## 440 2.497254
## 441 2.530238
## 442 2.625102
## 443 2.430602
## 444 2.576912
## 445 2.591835
## 446 2.486402
## 447 2.599078
## 448 2.431196
## 449 2.586003
## 450 2.617365
## 451 2.642217
## 452 2.647948
## 453 2.409836
## 454 2.601363
## 455 2.596131
## 456 2.494653
## 457 2.475953
## 458 2.510714
## 459 2.496369
## 460 2.402256
## 461 2.506077
## 462 2.514736
## 463 2.489406
## 464 2.528682
## 465 2.518221
## 466 2.687515
## 467 2.543948
## 468 2.415526
## 469 2.489688
## 470 2.443233
## 471 2.596443
## 472 2.569538
## 473 2.592350
## 474 2.630227
## 475 2.606971
## 476 2.563332
## 477 2.583912
## 478 2.702494
## 479 2.737811
## 480 2.626575
## 481 2.542442
## 482 2.588752
## 483 2.497402
## 484 2.540525
## 485 2.483411
## 486 2.620975
## 487 2.742715
## 488 2.440184
## 489 2.547879
## 490 2.338789
## 491 2.614354
## 492 2.521597
## 493 2.575491
## 494 2.513956
## 495 2.539307
## 496 2.492808
## 497 2.508954
## 498 2.500726
## 499 2.493727
## 500 2.795678
## 501 2.645321
## 502 2.585398
## 503 2.665253
## 504 2.559871
## 505 2.590067
## 506 2.533042
## 507 2.645450
## 508 2.680018
## 509 2.383111
## 510 2.553383
## 511 2.528032
## 512 2.617265
## 513 2.572867
## 514 2.552048
## 515 2.649133
## 516 2.518466
## 517 2.490822
## 518 2.585277
## 519 2.627326
## 520 2.461537
## 521 2.554136
## 522 2.518086
## 523 2.673662
## 524 2.486331
## 525 2.571790
## 526 2.511931
## 527 2.504615
## 528 2.561023
## 529 2.495055
## 530 2.577001
## 531 2.629534
## 532 2.517455
## 533 2.579493
## 534 2.411135
## 535 2.469142
## 536 2.554760
## 537 2.569947
## 538 2.545717
## 539 2.494875
## 540 2.520458
## 541 2.595579
## 542 2.535848
## 543 2.637295
## 544 2.583085
## 545 2.633520
## 546 2.596876
## 547 2.374014
## 548 2.640739
## 549 2.551324
## 550 2.543713
## 551 2.485095
## 552 2.611989
## 553 2.584816
## 554 2.545236
## 555 2.625202
## 556 2.460264
## 557 2.583265
## 558 2.616475
## 559 2.369880
## 560 2.530388
## 561 2.468212
## 562 2.505029
## 563 2.584160
## 564 2.559310
## 565 2.560657
## 566 2.588410
## 567 2.522927
## 568 2.549805
## 569 2.601262
## 570 2.419453
## 571 2.530546
## 572 2.472160
## 573 2.553297
## 574 2.478674
## 575 2.682588
## 576 2.394791
## 577 2.680753
## 578 2.630481
## 579 2.638941
## 580 2.553685
## 581 2.499343
## 582 2.587589
## 583 2.559265
## 584 2.363247
## 585 2.730654
## 586 2.398941
## 587 2.499837
## 588 2.607393
## 589 2.412933
## 590 2.581457
## 591 2.461373
## 592 2.544545
## 593 2.704661
## 594 2.495810
## 595 2.448338
## 596 2.349370
## 597 2.476047
## 598 2.551054
## 599 2.731237
## 600 2.508042
## 601 2.650888
## 602 2.461713
## 603 2.542168
## 604 2.497323
## 605 2.492921
## 606 2.600913
## 607 2.475344
## 608 2.724788
## 609 2.482292
## 610 2.468376
## 611 2.493166
## 612 2.497782
## 613 2.597521
## 614 2.514542
## 615 2.484145
## 616 2.548649
## 617 2.564210
## 618 2.581785
## 619 2.565860
## 620 2.689157
## 621 2.555166
## 622 2.566169
## 623 2.632502
## 624 2.560374
## 625 2.634459
## 626 2.656622
## 627 2.619652
## 628 2.571939
## 629 2.140158
## 630 2.161094
## 631 1.273599
## 632 2.311206
## 633 2.217782
## 634 1.180507
## 635 2.160592
## 636 1.215045
## 637 1.168098
## 638 1.184790
## 639 1.584217
## 640 2.093207
## 641 2.083396
## 642 2.155245
## 643 2.231620
## 644 1.172364
## 645 2.683018
## 646 2.198944
## 647 2.163242
## 648 2.326415
## 649 2.237784
## 650 2.190490
## 651 1.513740
## 652 1.632922
## 653 1.809163
## 654 2.109545
## 655 2.058444
## 656 2.128805
## 657 2.106327
## 658 2.001390
## 659 2.153629
## 660 2.055380
## 661 2.120588
## 662 1.956496
## 663 2.097987
## 664 2.026100
## 665 2.108134
## 666 2.189181
## 667 2.117661
## 668 2.004098
## 669 2.017742
## 670 2.094492
## 671 1.974951
## 672 2.080925
## 673 2.116347
## 674 2.096053
## 675 2.058166
## 676 1.994869
## 677 1.992457
## 678 2.009882
## 679 2.043975
## 680 2.074250
## 681 2.004047
## 682 2.039384
## 683 2.053544
## 684 2.148223
## 685 2.132181
## 686 2.043379
## 687 2.079544
## 688 1.959353
## 689 2.062883
## 690 1.984617
## 691 2.144202
## 692 2.136313
## 693 2.010840
## 694 2.001035
## 695 2.094812
## 696 2.125580
## 697 2.152643
## 698 2.051323
## 699 2.087526
## 700 2.126270
## 701 2.094501
## 702 2.046526
## 703 2.082257
## 704 2.027585
## 705 2.018020
## 706 2.063798
## 707 2.105169
## 708 2.034495
## 709 2.036700
## 710 1.973873
## 711 2.099295
## 712 2.075092
## 713 2.237424
## 714 2.158990
## 715 2.140423
## 716 2.035073
## 717 2.026759
## 718 2.116831
## 719 2.058611
## 720 2.051224
## 721 2.103557
## 722 2.204428
## 723 2.074486
## 724 2.124220
## 725 1.952977
## 726 2.030109
## 727 2.160609
## 728 2.140546
## 729 2.161691
## 730 2.020068
## 731 2.119320
## 732 2.209663
## 733 2.025725
## 734 2.086865
## 735 2.031086
## 736 1.996457
## 737 2.027883
## 738 2.040140
## 739 2.000743
## 740 1.987152
## 741 2.118928
## 742 2.034942
## 743 2.079291
## 744 2.079692
## 745 2.052837
## 746 2.138795
## 747 2.097013
## 748 2.059274
## 749 2.063625
## 750 2.086914
## 751 2.130523
## 752 2.099417
## 753 2.051342
## 754 2.048008
## 755 1.952570
## 756 2.152947
## 757 2.136326
## 758 1.998388
## 759 2.083767
## 760 2.102628
## 761 2.080830
## 762 2.003065
## 763 2.082593
## 764 2.121819
## 765 2.011999
## 766 2.156295
## 767 1.922607
## 768 2.131392
## 769 2.118014
## 770 2.122845
## 771 2.120259
## 772 1.984920
## 773 1.995102
## 774 2.124407
## 775 2.138020
## 776 2.123703
## 777 2.024604
## 778 1.954508
## 779 2.149775
## 780 2.120959
## 781 2.019074
## 782 2.042520
## 783 2.011214
## 784 2.007158
## 785 2.072492
## 786 1.997368
## 787 2.041860
## 788 1.987650
## 789 2.096780
## 790 2.080911
## 791 2.135164
## 792 2.139845
## 793 2.017740
## 794 2.050348
## 795 1.929369
## 796 2.116272
## 797 2.042323
## 798 2.033835
## 799 2.080483
## 800 2.070307
## 801 2.114492
## 802 2.109327
## 803 2.151916
## 804 2.139388
## 805 2.111744
## 806 1.934807
## 807 2.110259
## 808 2.118225
## 809 1.982764
## 810 2.021326
## 811 2.102993
## 812 2.161909
## 813 2.001453
## 814 2.043789
## 815 1.958304
## 816 2.151959
## 817 2.011894
## 818 2.054906
## 819 2.105352
## 820 2.009032
## 821 2.166549
## 822 2.126462
## 823 2.065118
## 824 2.012789
## 825 2.132537
## 826 2.079599
## 827 2.129852
## 828 2.044144
## 829 2.109267
## 830 2.063037
## 831 2.033091
## 832 2.054775
## 833 2.055604
## 834 2.104275
## 835 2.068880
## 836 2.117076
## 837 2.094117
## 838 2.085858
## 839 2.159849
## 840 2.047203
## 841 2.093090
## 842 1.972063
## 843 2.063294
## 844 2.098411
## 845 2.133772
## 846 2.100061
## 847 2.003267
## 848 1.979587
## 849 1.967856
## 850 2.075073
## 851 2.049968
## 852 2.047140
## 853 2.057309
## 854 1.984074
## 855 2.058768
## 856 2.143103
## 857 2.033499
## 858 2.128031
## 859 1.988740
## 860 1.990932
## 861 2.200287
## 862 2.103233
## 863 2.116960
## 864 2.096530
## 865 2.063334
## 866 2.087188
## 867 2.068500
## 868 2.059579
## 869 2.162446
## 870 2.036963
## 871 2.057512
## 872 2.003827
## 873 2.069747
## 874 2.108603
## 875 2.119820
## 876 2.054354
## 877 2.094425
## 878 1.961454
## 879 2.041597
## 880 2.087686
## 881 2.052192
## 882 2.065552
## 883 2.057895
## 884 1.921396
## 885 2.001025
## 886 1.986720
## 887 2.053027
## 888 2.082929
## 889 2.033056
## 890 2.041758
## 891 2.132878
## 892 2.109659
## 893 2.147723
## 894 2.117232
## 895 2.112056
## 896 2.056692
## 897 2.022522
## 898 2.114222
## 899 1.985420
## 900 2.160718
## 901 2.055353
## 902 2.141800
## 903 2.199766
## 904 2.202712
## 905 2.171786
## 906 2.102622
## 907 2.101655
## 908 2.090374
## 909 1.981467
## 910 2.086609
## 911 1.922598
## 912 2.035327
## 913 2.072840
## 914 1.926529
## 915 2.025484
## 916 2.052837
## 917 2.088815
## 918 2.120195
## 919 1.953715
## 920 2.025463
## 921 1.891888
## 922 2.060415
## 923 2.132616
## 924 2.137157
## 925 2.004492
## 926 2.053331
## 927 1.934652
## 928 2.002595
## 929 2.069764
## 930 1.953618
## 931 2.013820
## 932 1.998012
## 933 2.038309
## 934 2.001905
## 935 2.104656
## 936 2.036542
## 937 2.113036
## 938 2.070706
## 939 2.012276
## 940 1.959332
## 941 2.080930
## 942 2.130407
## 943 2.157330
## 944 2.092434
## 945 2.041466
## 946 1.987416
## 947 2.025688
## 948 2.101839
## 949 2.088773
## 950 2.146136
## 951 2.093944
## 952 2.125968
## 953 2.122707
## 954 1.940596
## 955 1.829106
## 956 1.511929
## 957 1.947638
## 958 1.885730
## 959 1.587666
## 960 1.736776
## 961 1.464111
## 962 1.493073
## 963 1.376340
## 964 1.652360
## 965 1.972096
## 966 1.829364
## 967 1.847455
## 968 1.823430
## 969 1.430790
## 970 2.156096
## 971 1.887226
## 972 1.876439
## 973 1.983400
## 974 1.910087
## 975 1.842566
# We can access the estimated deviation between each series average Dim1 and the overall average:
ranef(md_final1)
## $Source
## (Intercept) RegisterFiction
## Access -0.76244356309470196 1.658131412388347048
## Achievers -0.27292168586377225 -1.746777523614002181
## BBC -1.48451072245553073 0.013613910897331827
## Book1 1.56858377181185560 0.808150163526446752
## Book10 -1.17679073167432491 -0.606294441731024314
## Book100 -4.08057225803153933 -2.102351941203952634
## Book101 -0.04599447611808670 -0.023696817514062628
## Book102 -1.47092730944075067 -0.757836570173723967
## Book103 2.19972141274745159 1.133318635173096389
## Book104 2.29814210269453323 1.184025966272949315
## Book105 1.29592733002658322 0.667674817564663847
## Book106 -3.09785005023388571 -1.596043558314470756
## Book107 4.52201865598057129 2.329789573227002197
## Book108 -0.63054392914807389 -0.324862585351766708
## Book109 -3.49936336126617986 -1.802907261611608858
## Book11 -3.37502043363838800 -1.738844532478764915
## Book110 -1.49417949677374717 -0.769816331365440920
## Book111 -0.48989333975532773 -0.252397984569531553
## Book112 -2.84457841343940521 -1.465555459195834187
## Book113 -1.10070028342448234 -0.567091876142269302
## Book114 -3.68352499533869393 -1.897789191009034315
## Book115 4.66096903394114559 2.401378207948874799
## Book116 -0.37975076958218851 -0.195651422673235820
## Book117 -3.63227918597451982 -1.871386833696702112
## Book118 3.20314549072983690 1.650292830163751612
## Book119 1.63438913822902987 0.842053751327516586
## Book12 -2.30167216717778222 -1.185844691061936462
## Book120 -0.51048745006055729 -0.263008277695048087
## Book121 2.53380098585006452 1.305439797259239976
## Book122 -6.01759201207765315 -3.100324034959673902
## Book123 -0.59616852758626504 -0.307152032117256113
## Book124 -0.62649694700669833 -0.322777539377101075
## Book125 1.38709218808705370 0.714643870970294470
## Book126 -1.98982704921284870 -1.025178944286307070
## Book127 -1.44682501639166605 -0.745418825951825625
## Book128 1.58625639205053015 0.817255275534157555
## Book129 2.61045418013731867 1.344932295276424661
## Book13 -4.24757612462301193 -2.188394015921805824
## Book130 -0.24074052502189336 -0.124031944075998379
## Book131 0.28764208414656556 0.148196099894380873
## Book132 -1.38522228527515323 -0.713680478201370372
## Book133 -1.46180363964273674 -0.753135963568117073
## Book134 3.28645585090645653 1.693215167121510323
## Book135 1.26460512505072198 0.651537301973762251
## Book136 0.73354049221460527 0.377927452387036178
## Book137 -0.18111339169628918 -0.093311444212583597
## Book138 -1.41726288944770662 -0.730188120296650811
## Book139 0.59782291063915793 0.308004386934866703
## Book14 -2.45283533148215094 -1.263725476358243505
## Book140 -0.14506172534219311 -0.074737262467856447
## Book141 0.59581139288841412 0.306968032722607143
## Book142 0.85556059577308585 0.440793439155723221
## Book143 1.40360339629107189 0.723150611795926990
## Book144 2.95272350408224460 1.521272899512483123
## Book145 0.99684577112291228 0.513584985016825701
## Book146 -2.26049591988726961 -1.164630273585976150
## Book147 1.46440391497127642 0.754475651616493215
## Book148 -0.09125362550981052 -0.047014787289907572
## Book149 0.65692321788718644 0.338453460695070651
## Book15 -3.07307725126788700 -1.583280362688485710
## Book150 0.76468309739129081 0.393972436351844202
## Book151 1.35201036064849545 0.696569360006478289
## Book152 1.67603234499739395 0.863508751031322741
## Book153 0.75421841575944781 0.388580926938064342
## Book154 1.05227026914785649 0.542140244829626861
## Book155 3.63999206891953175 1.875360588701238118
## Book156 1.83593603286153928 0.945892742130901798
## Book157 1.26110891562681160 0.649736019652453312
## Book158 3.06696094967654043 1.580129182483735573
## Book159 -4.75286219961775647 -2.448722492776416182
## Book16 2.78989832615154265 1.437383727295098224
## Book160 0.87577155984007793 0.451206331478904654
## Book161 0.29567618182959371 0.152335347968346912
## Book162 0.62681031822576283 0.322938991386538865
## Book163 2.68561070943145941 1.383653696409487877
## Book164 -2.73780034617078316 -1.410542323095044681
## Book165 -0.55178343055051871 -0.284284382921738410
## Book166 0.08469431108050204 0.043635362407457495
## Book167 5.73246143581028988 2.953421889229392416
## Book168 0.70593001642166486 0.363702257068756363
## Book169 -0.41604190233518162 -0.214348979919422644
## Book17 -3.77282201548776230 -1.943795915503280458
## Book170 -1.17590470599840224 -0.605837952375624100
## Book171 -0.64879126874410253 -0.334263798562980441
## Book172 1.65780895204125467 0.854119875370255466
## Book173 -0.81128119371634722 -0.417980245078321766
## Book174 -4.08032081831269622 -2.102222396927420078
## Book175 -1.27564246113942348 -0.657223848733504479
## Book176 -2.60991331583930153 -1.344653636540600550
## Book177 -6.94332121693758086 -3.577269048501796611
## Book178 1.49857577009402254 0.772081335674763336
## Book179 0.46438025985324111 0.239253388746562268
## Book18 -2.23296925733394325 -1.150448259693206854
## Book180 2.93084824854291126 1.510002547454158517
## Book181 1.33013510510916233 0.685299007948153127
## Book182 -0.25976613041434049 -0.133834127666955405
## Book183 2.20909652226430886 1.138148786055235284
## Book184 -5.72056986420450642 -2.947295231724387676
## Book185 7.98139814774100476 4.112096742411181616
## Book186 1.06870963743220448 0.550609973004821174
## Book187 1.44030162192219180 0.742057907394594762
## Book188 -1.58420688943945431 -0.816199351139138773
## Book189 1.05136029683204391 0.541671417924080467
## Book19 0.83010531757022743 0.427678623350578713
## Book190 -3.73334597962942549 -1.923457464087682478
## Book191 2.84535874413632017 1.465957493433118319
## Book192 2.18637116100888784 1.126440450966728957
## Book193 -0.62377900337920567 -0.321377227435535928
## Book194 -2.64037344177912692 -1.360347000326248335
## Book195 2.43573949550132962 1.254917529411576194
## Book196 -4.62657959415889319 -2.383660422081750774
## Book197 -1.92393786955606116 -0.991232175059726606
## Book198 -0.63855408019121296 -0.328989495875586846
## Book199 -0.39101766365034002 -0.201456240016905430
## Book2 3.17009912768191393 1.633267010962340837
## Book20 -0.24167444397759577 -0.124513108531690161
## Book200 0.08643044247251248 0.044529834793039083
## Book201 -4.24733665822411410 -2.188270640420346247
## Book202 1.99774347859692458 1.029257568467083939
## Book203 -1.06164331376421717 -0.546969331854225360
## Book204 4.48815810717639341 2.312344277320629526
## Book205 1.94429457836288933 1.001720156541324069
## Book206 -2.27589360933641194 -1.172563318329821858
## Book207 2.45384315525801844 1.264244717321913791
## Book208 0.06426782725450225 0.033111432132962540
## Book209 2.19466867173070401 1.130715412092301086
## Book21 4.38110465354904033 2.257189259393161507
## Book210 0.00635287868101807 0.003273067104983272
## Book211 -2.95754668711954283 -1.523757852009351765
## Book212 3.55658592218335556 1.832388901542895354
## Book213 1.24174805727590742 0.639761110359452712
## Book214 1.10648546185836594 0.570072458360056600
## Book215 2.03633348877933962 1.049139530527281483
## Book216 2.63017423808656847 1.355092267821614627
## Book217 -4.01748483524185929 -2.069848665344448335
## Book218 0.22059149245512288 0.113650959485721653
## Book219 1.15659380582777516 0.595888782040456144
## Book22 -2.08388945069998721 -1.073640841259597467
## Book220 2.60596418515798067 1.342619004624059365
## Book221 0.97008540104605956 0.499797772728727607
## Book222 -0.68560922757467213 -0.353232781912377947
## Book223 -0.70665832403780726 -0.364077488490667456
## Book224 -0.47389698430894078 -0.244156501072037208
## Book225 1.87979430381970958 0.968488965223209153
## Book226 3.11503382925531591 1.604896814401730154
## Book227 1.79508306520953909 0.924844881581911915
## Book228 0.10853319109079904 0.055917393577750441
## Book229 -1.82478680709234053 -0.940148548680421969
## Book23 3.41344488224207021 1.758641195545481040
## Book230 4.95824262153313455 2.554536555460693581
## Book231 -0.49243168358364714 -0.253705764885002016
## Book232 3.67884549214073564 1.895378263813041197
## Book233 -2.57140711889650087 -1.324814855905913413
## Book234 -1.65866896617679060 -0.854562963317969215
## Book235 2.83205638567753581 1.459103984327043246
## Book236 0.54673275443426717 0.281682223698483281
## Book237 0.30566193066364089 0.157480106379208007
## Book238 -2.24440377788132306 -1.156339439887897891
## Book239 4.23253087914970294 2.180642553865363098
## Book24 -1.48733075776526458 -0.766287792023699454
## Book240 -5.40486933721731511 -2.784643139375260645
## Book241 -4.09511984176459443 -2.109847002917616621
## Book242 -1.33845449757037183 -0.689585242766330375
## Book243 -1.26032858492989597 -0.649333985415169845
## Book244 -1.75550917789114602 -0.904456016108189598
## Book245 -1.89159793238488483 -0.974570313587621584
## Book246 0.28340352888607151 0.146012353518547799
## Book247 -3.22154641858465318 -1.659773173593373619
## Book248 -1.74557132233687851 -0.899335932797620474
## Book249 -0.90485268908574445 -0.466189222273620141
## Book25 2.60978367422040414 1.344586843872338289
## Book250 0.27216058145780925 0.140219873725024424
## Book251 0.36690546218180736 0.189033390877474172
## Book252 -1.81124498223465813 -0.933171664072887541
## Book253 3.91266048402475208 2.015842103438093780
## Book254 0.51378217794590186 0.264705754697656226
## Book255 -7.43699317158577244 -3.831613813535621027
## Book256 -10.10934239672800672 -5.208435059623019114
## Book257 2.09392515771430920 1.078811338628290928
## Book258 -1.05232807084708480 -0.542170024847451026
## Book259 -0.68072411303715197 -0.350715921682604348
## Book26 3.70843156572458321 1.910621307018362192
## Book260 1.80936723590380510 0.932204230243970478
## Book261 3.59500830588654052 1.852184500752071861
## Book262 -3.19121562510544177 -1.644146443194526075
## Book263 -2.92794864021574819 -1.508508640028957792
## Book264 -0.49049200575257301 -0.252706423323180385
## Book265 -3.54501763021608518 -1.826428800964861709
## Book266 -0.56691770696087274 -0.292081714613978582
## Book267 -0.04490885961860926 -0.023137496955386708
## Book268 -0.21002895936322416 -0.108209036013817733
## Book269 3.51181767890937202 1.809323851545042938
## Book27 -4.10248343353070677 -2.113640799587496844
## Book270 1.81931706477801747 0.937330482329613024
## Book271 2.45470523429405274 1.264688869127167825
## Book272 4.26429294416658866 2.197006689781219713
## Book273 -0.60208334763904625 -0.310199407003305394
## Book274 0.00046200526812710 0.000238029769079616
## Book275 3.42313129807749394 1.763631734579518273
## Book276 -1.54846652940392637 -0.797785557546308977
## Book277 3.68103660969065194 1.896507149651396329
## Book278 0.47249817077588363 0.243435818246039548
## Book279 -5.54641792560592783 -2.857570398287969216
## Book28 2.75843244133634480 1.421172186403320215
## Book280 2.46866612534980678 1.271881660862256513
## Book281 -0.64686356423297353 -0.333270625776231344
## Book282 0.42159958769011180 0.217212355410823510
## Book283 1.95449584695594480 1.006975952903498506
## Book284 1.34990305633819263 0.695483655593635230
## Book285 2.43953503792386384 1.256873031109709160
## Book286 2.37997974451792782 1.226189543896732737
## Book287 4.09677422481748810 2.110699357735227544
## Book288 3.82110050640609833 1.968669480455054632
## Book289 4.22687631933877483 2.177729267678172320
## Book29 -2.17702990655136830 -1.121627742552268714
## Book290 -2.31928492081673054 -1.194918959194282593
## Book291 2.33474454176609392 1.202883911671033257
## Book292 -0.05266361532739638 -0.027132825229709483
## Book293 -0.79047156365211035 -0.407258914001491501
## Book294 1.28827637858179078 0.663732970293033131
## Book295 -1.47971572628030801 -0.762364451077287342
## Book296 -5.94995472770890999 -3.065476624572439857
## Book297 1.40953018966379817 0.726204155457049749
## Book298 -0.30884476886848716 -0.159119936691079156
## Book299 -0.06567861410750322 -0.033838283734033373
## Book3 -5.81541053148806419 -2.996158099077422143
## Book30 3.34168877581228063 1.721671726533143598
## Book300 -4.34866686491780730 -2.240476983862931704
## Book31 -0.44887274562409912 -0.231263761169519605
## Book32 3.06300975409472187 1.578093486709654325
## Book33 2.04807931564528634 1.055191098873870192
## Book34 3.60459893516240593 1.857125689585524153
## Book35 -0.19795985285876405 -0.101990910740259094
## Book36 5.39916012850409199 2.781701697522993122
## Book37 3.53091512422149023 1.819163047786437115
## Book38 -5.39942147664238625 -2.781836346717057040
## Book39 -1.98854590397874453 -1.024518885353498776
## Book4 0.22772759114228366 0.117327549429215056
## Book40 0.08268279332975945 0.042599008195197699
## Book41 -1.38421652639978121 -0.713162301095240148
## Book42 1.25485884261557290 0.646515919064361011
## Book43 1.31409085638299583 0.677032849350367116
## Book44 5.39611890523808668 2.780134828654456491
## Book45 -1.87363795246753395 -0.965317150978159177
## Book46 0.24532837146128728 0.126395648786487680
## Book47 1.12017096655538761 0.577123368268466663
## Book48 -6.09270064809201273 -3.139020760992445869
## Book49 3.13083861158258481 1.613039597498056699
## Book5 0.83788797553441297 0.431688327148012252
## Book50 0.37163492356004224 0.191470057031299212
## Book51 0.53980020218617009 0.278110502931230630
## Book52 -3.19821041801204231 -1.647750230976146035
## Book53 -0.52091621173256553 -0.268381280783609011
## Book54 1.73547987852382435 0.894136719268643354
## Book55 1.77398607546662412 0.913975499903330491
## Book56 -0.50242940573763872 -0.258856692070936034
## Book57 1.36404354719312071 0.702768978954817825
## Book58 0.09884677525537422 0.050926854543713970
## Book59 -0.58235131636984960 -0.300033265683043004
## Book6 -4.69804834091000334 -2.420481840492337611
## Book60 -2.02068229471085736 -1.041075877649363157
## Book61 -0.36078503078946594 -0.185880082957644188
## Book62 -0.45899020097753984 -0.236476376106183162
## Book63 0.04295531775257873 0.022131012503067420
## Book64 -1.13906280052794351 -0.586856631476080581
## Book65 -1.64797679146599441 -0.849054247177802868
## Book66 0.75618204023041213 0.389592606050031875
## Book67 1.10928721872547342 0.571515951727132432
## Book68 2.05408992225762610 1.058287823960503138
## Book69 -0.26685433582172147 -0.137486042510156281
## Book7 0.61402281252460822 0.316350739608601828
## Book70 -2.76112437342344919 -1.422559096937199730
## Book71 -0.02307754174354709 -0.011889782024388940
## Book72 -5.07019109811745583 -2.612213538535468338
## Book73 1.16200574644287036 0.598677068373440591
## Book74 0.82553150935127562 0.425322151272702398
## Book75 -1.64467215516120224 -0.847351665257661812
## Book76 -8.64954325572579208 -4.456331833950856414
## Book77 -4.08767243675886505 -2.106010024822226878
## Book78 4.13498108876166270 2.130383918993091541
## Book79 0.00270101609782318 0.001391590707726020
## Book8 0.50532901406480146 0.260350599496136648
## Book80 6.20870023661870718 3.198784917756966273
## Book81 -2.84647019799070033 -1.466530125657364181
## Book82 0.53647161924148801 0.276395583460943783
## Book83 -3.35128931350759496 -1.726618020284128807
## Book84 1.62348144375922487 0.836433997236036841
## Book85 6.74406329131504290 3.474609357594888870
## Book86 -1.31899785265990843 -0.679560983272746388
## Book87 -0.79055537689172461 -0.407302095427002353
## Book88 -5.22252764777642486 -2.690698863788927309
## Book89 -2.96286284117507748 -1.526496788141752603
## Book9 -4.39101649756292023 -2.262295941296043722
## Book90 1.26570667048565277 0.652104829280475862
## Book91 1.81814367942341693 0.936725942372461540
## Book92 1.97905312616293538 1.019628110578169933
## Book93 3.40669192979314595 1.755162006404324293
## Book94 2.11147804475353507 1.087854762885271720
## Book95 0.71822661600507742 0.370037589068701989
## Book96 0.30427302555003211 0.156764528470743181
## Book97 -6.60639199368808061 -3.403679717948284278
## Book98 -0.49578421316821925 -0.255433021905434932
## Book99 2.02151051868755216 1.041502586986938983
## Dogo -1.05471503592226146 0.009672410110716123
## Ducksters -2.71129389744770544 0.024864295674814407
## EIM 4.37363336853911466 0.428912400655695358
## Encyclopedia -0.79747517382869559 0.007313356377533303
## Factmonster -5.67022796916759919 0.051999609817532377
## GreenLine 1.97893168765736860 0.517597701261653720
## History -2.33791653145736555 0.021440186899843505
## HT -2.82718577669806903 2.200907310089581070
## JTT -1.64596453709429569 0.374906344498937172
## NGL 2.76437273720136201 0.043865486802689646
## POC -3.60461805048577988 -2.008145598959947709
## Quatr 0.64382234671657967 -0.005904261874602246
## Revision 0.28611999609619287 -0.002623902995848873
## Science 0.18638034631938261 -0.001709226742943916
## Science_Tech -0.56077784461206359 0.005142690783267873
## Solutions -0.00380418017697378 -1.469397533125226696
## Spoken.BNC2014 -0.00000000003062265 -0.000000000007615864
## Teen 4.39394607474602505 -0.040295290186541877
## TeenVogue 5.35639709949097309 -0.049121580421598976
## TweenTribute 3.12461431627395703 -0.028654707739824814
## WhyFiles 1.28622698795597912 -0.011795522485306520
## World -0.66058999269444907 0.006058031891810894
## RegisterInformative
## Access -0.605981988140108729
## Achievers 3.439032234309786329
## BBC -0.930788272414960094
## Book1 -0.209724710676426701
## Book10 0.157340717252238471
## Book100 0.545585675173342333
## Book101 0.006149609839095708
## Book102 0.196667726609324522
## Book103 -0.294109849373435484
## Book104 -0.307269013132909996
## Book105 -0.173269664796772860
## Book106 0.414192545645043875
## Book107 -0.604608482722901242
## Book108 0.084305757515652460
## Book109 0.467876170646286171
## Book11 0.451251120081548829
## Book110 0.199776619069287897
## Book111 0.065500319963031545
## Book112 0.380329310729695946
## Book113 0.147167178846951463
## Book114 0.492499175242937570
## Book115 -0.623186596522011693
## Book116 0.050773903001546467
## Book117 0.485647445207590678
## Book118 -0.428270885731433959
## Book119 -0.218523100460133485
## Book12 0.307740994142610080
## Book120 0.068253818949198561
## Book121 -0.338777366066483565
## Book122 0.804571465280427223
## Book123 0.079709655428857967
## Book124 0.083764662947440144
## Book125 -0.185458700425075007
## Book126 0.266046295831720903
## Book127 0.193445172272606436
## Book128 -0.212087597015718665
## Book129 -0.349026145432438373
## Book13 0.567914630905355544
## Book130 0.032187784844917036
## Book131 -0.038458674608319407
## Book132 0.185208688386658188
## Book133 0.195447862523592059
## Book134 -0.439409749653382586
## Book135 -0.169081784943393654
## Book136 -0.098076730273353632
## Book137 0.024215444757060091
## Book138 0.189492620530253425
## Book139 -0.079930851780210116
## Book14 0.327951996875379348
## Book140 0.019395220659763839
## Book141 -0.079661905367608032
## Book142 -0.114391211766395981
## Book143 -0.187666302228519877
## Book144 -0.394788658233938883
## Book145 -0.133281495508706549
## Book146 0.302235597041778825
## Book147 -0.195795527723727963
## Book148 0.012200904122649703
## Book149 -0.087832753521909307
## Book15 0.410880342504125029
## Book150 -0.102240597054180607
## Book151 -0.180768146919569050
## Book152 -0.224090931549604189
## Book153 -0.100841435360046805
## Book154 -0.140691929698805257
## Book155 -0.486678682539757601
## Book156 -0.245470570479991435
## Book157 -0.168614330464346152
## Book158 -0.410062573249649565
## Book159 0.635473009228175290
## Book16 -0.373018406656677071
## Book160 -0.117093482864448539
## Book161 -0.039532859387225353
## Book162 -0.083806561690390913
## Book163 -0.359074815860445984
## Book164 0.366052738660718635
## Book165 0.073775224765065872
## Book166 -0.011323902622542011
## Book167 -0.766448587377895563
## Book168 -0.094385120586085114
## Book169 0.055626144528914873
## Book17 0.504438474916679480
## Book170 0.157222252760973125
## Book171 0.086745485687117097
## Book172 -0.221654405121147396
## Book173 0.108470912862278362
## Book174 0.545552056871767332
## Book175 0.170557512385841992
## Book176 0.348953830130919851
## Book177 0.928344446451658034
## Book178 -0.200364414994961437
## Book179 -0.062089138872747876
## Book18 0.298555193455035395
## Book180 -0.391863865996888217
## Book181 -0.177843354682517829
## Book182 0.034731569664114600
## Book183 -0.295363331760742809
## Book184 0.764858645890977518
## Book185 -1.067138681024891511
## Book186 -0.142889926273228440
## Book187 -0.192572973387009849
## Book188 0.211813571904748615
## Book189 -0.140570263464532524
## Book19 -0.110987758949772752
## Book190 0.499160401569357481
## Book191 -0.380433643461286830
## Book192 -0.292324877646936876
## Book193 0.083401265116126444
## Book194 0.353026447236041929
## Book195 -0.325666228452116679
## Book196 0.618588617479856495
## Book197 0.257236699947488878
## Book198 0.085376740551551131
## Book199 0.052280323086420805
## Book2 -0.423852480381536556
## Book20 0.032312652822196440
## Book200 -0.011556028990562173
## Book201 0.567882613475284015
## Book202 -0.267104747979448776
## Book203 0.141945136002254835
## Book204 -0.600081218110760872
## Book205 -0.259958457587441738
## Book206 0.304294317795389957
## Book207 -0.328086746165538234
## Book208 -0.008592815837424776
## Book209 -0.293434281598922264
## Book21 -0.585767825997200564
## Book210 -0.000849400374580936
## Book211 0.395433533366026657
## Book212 -0.475527011645779429
## Book213 -0.166025721243047875
## Book214 -0.147940675867041016
## Book215 -0.272264356835504873
## Book216 -0.351662780798844943
## Book217 0.537150683220949388
## Book218 -0.029493794188239362
## Book219 -0.154640323109546840
## Book22 0.278622742363889953
## Book220 -0.348425818618594563
## Book221 -0.129703547698193034
## Book222 0.091668165560642806
## Book223 0.094482497663946258
## Book224 0.063361555634241062
## Book225 -0.251334562797626337
## Book226 -0.416490072336546613
## Book227 -0.240008396909757199
## Book228 -0.014511237786181132
## Book229 0.243979883026295724
## Book23 -0.456388592820412498
## Book230 -0.662933034213037065
## Book231 0.065839704721791431
## Book232 -0.491873510568892280
## Book233 0.343805427375388384
## Book234 0.221769391785547887
## Book235 -0.378655075220803272
## Book236 -0.073099933074410275
## Book237 -0.040867986221215846
## Book238 0.300084025740959714
## Book239 -0.565903033048327231
## Book24 0.198860920569236793
## Book240 0.722648466955933211
## Book241 0.547530734050198697
## Book242 0.178955684293652301
## Book243 0.168509997732755934
## Book244 0.234717240506548963
## Book245 0.252912746016303980
## Book246 -0.037891966096049862
## Book247 0.430731149148587511
## Book248 0.233388517158572811
## Book249 0.120981723662800605
## Book25 -0.348936496628238002
## Book250 -0.036388747754183104
## Book251 -0.049056443962056440
## Book252 0.242169297355740276
## Book253 -0.523135329290913775
## Book254 -0.068694334696541917
## Book255 0.994349979415999452
## Book256 1.351651692044295583
## Book257 -0.279964548767753063
## Book258 0.140699657972465253
## Book259 0.091015009987180179
## Book26 -0.495829264054253427
## Book260 -0.241918236613534704
## Book261 -0.480664208300786433
## Book262 0.426675824210687671
## Book263 0.391476179009162872
## Book264 0.065580363538210826
## Book265 0.473980293689458376
## Book266 0.075798726345598255
## Book267 0.006004459410824003
## Book268 0.028081549438219389
## Book269 -0.469541353093873126
## Book27 0.548515270024904633
## Book270 -0.243248560833014715
## Book271 -0.328202008913795806
## Book272 -0.570149723608219583
## Book273 0.080500485951628939
## Book274 -0.000061771594816720
## Book275 -0.457683697866814065
## Book276 0.207034970466545371
## Book277 -0.492166470054049343
## Book278 -0.063174529752179298
## Book279 0.741573969871323735
## Book28 -0.368811316345253604
## Book280 -0.330068625086976652
## Book281 0.086487745375039629
## Book282 -0.056369224990436444
## Book283 -0.261322400108496777
## Book284 -0.180486393534938394
## Book285 -0.326173704718753177
## Book286 -0.318210969859918591
## Book287 -0.547751930401550791
## Book288 -0.510893464902993699
## Book289 -0.565147000159513579
## Book29 0.291075921790283076
## Book290 0.310095876124384717
## Book291 -0.312162877319371090
## Book292 0.007041295266592798
## Book293 0.105688598189046412
## Book294 -0.172246707905982066
## Book295 0.197842766292956190
## Book296 0.795528142156672002
## Book297 -0.188458733622794666
## Book298 0.041293541957312441
## Book299 0.008781442590990646
## Book3 0.777539149070879843
## Book30 -0.446794569899424177
## Book300 0.581430789010129123
## Book31 0.060015734191746689
## Book32 -0.409534285653467167
## Book33 -0.273834811780523046
## Book34 -0.481946506375158179
## Book35 0.026467870962605122
## Book36 -0.721885127332582366
## Book37 -0.472094743142091156
## Book38 0.721920070421801952
## Book39 0.265875002580837183
## Book4 -0.030447913604376764
## Book40 -0.011054956209939388
## Book41 0.185074215180356882
## Book42 -0.167778675539475064
## Book43 -0.175698186867713102
## Book44 -0.721478505970671202
## Book45 0.250511438760925353
## Book46 -0.032801194714647451
## Book47 -0.149770471995639143
## Book48 0.814613732222421172
## Book49 -0.418603222721279478
## Book5 -0.112028325427103323
## Book50 -0.049688788205973007
## Book51 -0.072173028473833847
## Book52 0.427611050588099006
## Book53 0.069648178028821672
## Book54 -0.232039258564907730
## Book55 -0.237187661320439419
## Book56 0.067176432427285604
## Book57 -0.182377022780672388
## Book58 -0.013216132739780546
## Book59 0.077862249713720064
## Book6 0.628144219484759514
## Book60 0.270171741696461187
## Book61 0.048238122539867201
## Book62 0.061368470612276516
## Book63 -0.005743264561042511
## Book64 0.152296371144440001
## Book65 0.220339813532846068
## Book66 -0.101103978286634436
## Book67 -0.148315279798879540
## Book68 -0.274638449275322660
## Book69 0.035679285594237178
## Book7 -0.082096830924561742
## Book70 0.369171236349703613
## Book71 0.003085541781232836
## Book72 0.677900906687706861
## Book73 -0.155363917029167409
## Book74 -0.110376226035403036
## Book75 0.219897972997856295
## Book76 1.156471837455626428
## Book77 0.546534991974968909
## Book78 -0.552860311369494428
## Book79 -0.000361134565987433
## Book8 -0.067564119415011156
## Book80 -0.830123251433016685
## Book81 0.380582248427262237
## Book82 -0.071727986195837062
## Book83 0.448078192761441896
## Book84 -0.217064706520367412
## Book85 -0.901703018972842552
## Book86 0.176354268100325673
## Book87 0.105699804289571514
## Book88 0.698268794827827444
## Book89 0.396144320313618903
## Book9 0.587093071518311804
## Book90 -0.169229065121723449
## Book91 -0.243091675425663456
## Book92 -0.264605787562351091
## Book93 -0.455485701292391076
## Book94 -0.282311426392008735
## Book95 -0.096029215620268074
## Book96 -0.040682285126800215
## Book97 0.883295922340756712
## Book98 0.066287948742795352
## Book99 -0.270282477914066344
## Dogo -0.661306362646309265
## Ducksters -1.699981363987139726
## EIM 1.367131560834593529
## Encyclopedia -0.500016960547408296
## Factmonster -3.555233125488755697
## GreenLine 0.964283132993086434
## History -1.465873743077808822
## HT -4.329443744225784485
## JTT -3.052325585958935328
## NGL -0.852107547059569703
## POC 0.579985832516267785
## Quatr 0.403676632830194004
## Revision 0.179397247079479738
## Science 0.116860483347946104
## Science_Tech -0.351607727246369628
## Solutions 2.489426104726500721
## Spoken.BNC2014 -0.000000000002809848
## Teen 2.755004335184580544
## TeenVogue 3.358461159749563052
## TweenTribute 1.959133280354183659
## WhyFiles 0.806464364279367407
## World -0.414189947417665905
##
## with conditional variances for "Source"
# Diagnostic plots (in new window)
residplot(md_final1)
## Plot predicted vs. observed values
dimensions_ref[, "predicted"] <- predict(md_final1)
dimensions_ref %>%
ggplot(aes(x = Corpus, y = Dim1nopunct)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
geom_point(aes(y = predicted), shape = "triangle filled", fill = "red", position = position_jitter(width = 0.2, height = 0)) +
facet_wrap(vars(Register))
## Compare means
comparisons <- emmeans(md_final1, "Corpus", by = "Register")
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
comparisons
## Register = Conversation:
## Corpus emmean SE df asymp.LCL asymp.UCL
## Textbook 14.65 1.206 Inf 12.290 17.02
## Reference 30.66 3.517 Inf 23.769 37.56
##
## Register = Fiction:
## Corpus emmean SE df asymp.LCL asymp.UCL
## Textbook 3.91 1.681 Inf 0.612 7.20
## Reference 4.43 0.328 Inf 3.789 5.08
##
## Register = Informative:
## Corpus emmean SE df asymp.LCL asymp.UCL
## Textbook -6.07 1.599 Inf -9.202 -2.93
## Reference -12.20 1.220 Inf -14.596 -9.81
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
pairs(comparisons)
## Register = Conversation:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -16.009 3.72 Inf -4.305 <.0001
##
## Register = Fiction:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -0.525 1.71 Inf -0.306 0.7593
##
## Register = Informative:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference 6.137 2.01 Inf 3.051 0.0023
##
## Degrees-of-freedom method: asymptotic
confint(comparisons)
## Register = Conversation:
## Corpus emmean SE df asymp.LCL asymp.UCL
## Textbook 14.65 1.206 Inf 12.290 17.02
## Reference 30.66 3.517 Inf 23.769 37.56
##
## Register = Fiction:
## Corpus emmean SE df asymp.LCL asymp.UCL
## Textbook 3.91 1.681 Inf 0.612 7.20
## Reference 4.43 0.328 Inf 3.789 5.08
##
## Register = Informative:
## Corpus emmean SE df asymp.LCL asymp.UCL
## Textbook -6.07 1.599 Inf -9.202 -2.93
## Reference -12.20 1.220 Inf -14.596 -9.81
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
# This is a warning that the degrees of freedom have been calculated according to the naive 'asymptotic' method (i.e. are assumed to be infinite), because we have a very large number of observations and so a more complex estimation method like Kenward-Roger might take a lot of computation.
# Rainplots for all textbook registers and the three ref. corpora on Dimension 2
Dimensions[Dimensions$Dim2>15,] # Remove one poetry outlier with a very high Dim 2 score
## Corpus Filename Level Dim1
## 1674 Textbook.English Solutions_Elementary_Poetry_0001.txt A 17.4036
## Dim2 Dim3 Dim4 Dim5 Dim6 TextType Register
## 1674 16.6553 -2.2428 -0.7473 -3.9201 -2.6293 Imaginative narrative Poetry
## Series Country
## 1674 Solutions Spain
Dimensions2 <- Dimensions[Dimensions$Dim2<15,]
colours <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
colours2 <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
colours <- c(colours, colours2[c(2:4)]) # Nine colours range
#scales::show_col(colours)
p2 <- ggplot(Dimensions2,aes(x=Register,y=Dim2, fill = Register, colour = Register))+ #Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
#note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim2), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 2 (Biber 1988)')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
annotate(geom = "text", x = 8.3, y = -10.5, label = "Reference Corpora", size = 5) +
annotate(geom = "segment", x = 7, xend = 9.5, y = -9.5, yend = -9.5) +
annotate(geom = "text", x = 3.8, y = -10.5, label = "Textbook Corpus", size = 5) +
annotate(geom = "segment", x = 1, xend = 6.5, y = -9.5, yend = -9.5) +
ggtitle("Dimension 2: Narrative vs. Non-narrative Concerns")
p2 + scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -15, to = 20, by = 5))
#ggsave(here("plots", "Dim2.svg"), width = 13, height = 8)
# Rainplots comparing the three textbook and reference corpora on Dimension 2
ggplot(dimensions_ref,aes(x=Subcorpus,y=Dim2, fill = Subcorpus, colour = Subcorpus))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Subcorpus)+0.25, y = Dim2), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 2 (Biber 1988)')+
theme_cowplot()+
theme(axis.title.x=element_blank())+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours3Reg)+
scale_fill_manual(values = colours3Reg) +
annotate(geom = "text", x = 1.5, y = -11, label = "Conversation", size = 5) +
annotate(geom = "segment", x = 0.7, xend = 2.5, y = -10, yend = -10) +
annotate(geom = "text", x = 3.5, y = -11, label = "Fiction", size = 5) +
annotate(geom = "segment", x = 2.7, xend = 4.5, y = -10, yend = -10) +
annotate(geom = "text", x = 5.7, y = -11, label = "Informative", size = 5) +
annotate(geom = "segment", x = 4.7, xend = 6.5, y = -10, yend = -10) +
scale_x_discrete(labels=rep(c("Reference", "Textbook"), 3))+
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -14, to = 14, by = 2))
#ggsave(here("plots", "Dim2_3RegComparison.svg"), width = 13, height = 8)
# Mixed effect model
# Check distribution of the outcome variable.
ggplot(dimensions_ref, aes(x = Dim2)) +
geom_histogram(bins = 20) +
facet_grid(rows = vars(Register), cols = vars(Corpus), scales = "free_y")
md0 <- lmer(Dim2 ~ 1 + (Register|Source), dimensions_ref, REML = FALSE)
md_corpus <- update(md0, .~. + Corpus)
md_register <- update(md0, . ~ . + Register)
md_both <- update(md_corpus, .~. + Register)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0619279 (tol = 0.002, component 1)
md_interaction <- update(md_both, . ~ . + Corpus:Register)
anova(md0, md_corpus, md_both, md_interaction)
## Data: dimensions_ref
## Models:
## md0: Dim2 ~ 1 + (Register | Source)
## md_corpus: Dim2 ~ (Register | Source) + Corpus
## md_both: Dim2 ~ (Register | Source) + Corpus + Register
## md_interaction: Dim2 ~ (Register | Source) + Corpus + Register + Corpus:Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 8 21440 21492 -10712 21424
## md_corpus 9 21433 21492 -10707 21415 9.2772 1 0.00232
## md_both 11 21345 21417 -10662 21323 91.7409 2 < 0.0000000000000002
## md_interaction 13 21343 21428 -10658 21317 6.1982 2 0.04509
##
## md0
## md_corpus **
## md_both ***
## md_interaction *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(md0, md_register)
## Data: dimensions_ref
## Models:
## md0: Dim2 ~ 1 + (Register | Source)
## md_register: Dim2 ~ (Register | Source) + Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 8 21440 21492 -10712 21424
## md_register 10 21357 21422 -10668 21337 87.226 2 < 0.00000000000000022
##
## md0
## md_register ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
md_final2 <- lmer(Dim2 ~ 1 + Corpus + Register + Corpus:Register + (Register|Source), dimensions_ref)
tab_model(md_final2)
Dim 2 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -3.10 | -3.47 – -2.74 | <0.001 |
Corpus [Reference] | 1.15 | 0.14 – 2.17 | 0.026 |
Register [Fiction] | 5.75 | 4.51 – 6.98 | <0.001 |
Register [Informative] | 1.37 | 0.68 – 2.06 | <0.001 |
Corpus [Reference] * Register [Fiction] |
1.10 | -0.47 – 2.68 | 0.169 |
Corpus [Reference] * Register [Informative] |
-1.15 | -2.45 – 0.16 | 0.084 |
Random Effects | |||
σ2 | 3.67 | ||
τ00 Source | 0.23 | ||
τ11 Source.RegisterFiction | 3.23 | ||
τ11 Source.RegisterInformative | 0.92 | ||
ρ01 | -0.58 | ||
0.10 | |||
ICC | 0.25 | ||
N Source | 325 | ||
Observations | 5033 | ||
Marginal R2 / Conditional R2 | 0.649 / 0.738 |
# Diagnostic plots (in new window)
residplot(md_final2) # I've seen worse, but I've also seen better...
# This function can be used to estimate mean and sd of all the terms of the model
library(merTools)
(randomSims <- REsim(md_final2, n.sims = 500))
## groupFctr groupID term mean median
## 1 Source Access (Intercept) -0.882428581 -0.8785489075
## 2 Source Achievers (Intercept) 0.199800508 0.2060298318
## 3 Source BBC (Intercept) 0.190793331 0.1360883224
## 4 Source Book1 (Intercept) -0.041592488 -0.0331700008
## 5 Source Book10 (Intercept) 0.109794092 0.1265650193
## 6 Source Book100 (Intercept) -0.017174211 -0.0197542967
## 7 Source Book101 (Intercept) 0.130652034 0.1285118054
## 8 Source Book102 (Intercept) 0.024651742 0.0542703656
## 9 Source Book103 (Intercept) -0.133811965 -0.1560515244
## 10 Source Book104 (Intercept) 0.246470638 0.2426626056
## 11 Source Book105 (Intercept) 0.129970743 0.1470971618
## 12 Source Book106 (Intercept) 0.148008601 0.1718435032
## 13 Source Book107 (Intercept) -0.076117123 -0.0937249292
## 14 Source Book108 (Intercept) -0.193536459 -0.1846967447
## 15 Source Book109 (Intercept) -0.043113891 -0.0531284120
## 16 Source Book11 (Intercept) 0.067110519 0.0898802046
## 17 Source Book110 (Intercept) 0.092638800 0.1396305004
## 18 Source Book111 (Intercept) 0.372847043 0.3917447078
## 19 Source Book112 (Intercept) -0.090328551 -0.0943664268
## 20 Source Book113 (Intercept) -0.085031239 -0.0961611084
## 21 Source Book114 (Intercept) -0.062212418 -0.0397267175
## 22 Source Book115 (Intercept) 0.152008009 0.1876498439
## 23 Source Book116 (Intercept) 0.215168596 0.2134949816
## 24 Source Book117 (Intercept) -0.156615947 -0.1447465151
## 25 Source Book118 (Intercept) 0.037327567 0.0351978134
## 26 Source Book119 (Intercept) -0.031472668 -0.0493354182
## 27 Source Book12 (Intercept) -0.096096913 -0.0824603553
## 28 Source Book120 (Intercept) -0.033383486 -0.0354378961
## 29 Source Book121 (Intercept) -0.042621947 -0.0474167904
## 30 Source Book122 (Intercept) 0.058385879 0.0017634125
## 31 Source Book123 (Intercept) -0.069599783 -0.0835531557
## 32 Source Book124 (Intercept) -0.002821799 -0.0013216188
## 33 Source Book125 (Intercept) 0.148128256 0.1873460844
## 34 Source Book126 (Intercept) -0.107278578 -0.1216251887
## 35 Source Book127 (Intercept) -0.017169757 -0.0257191962
## 36 Source Book128 (Intercept) -0.088128200 -0.0692394490
## 37 Source Book129 (Intercept) -0.129304598 -0.1232625889
## 38 Source Book13 (Intercept) 0.194875342 0.1990671838
## 39 Source Book130 (Intercept) 0.016272673 -0.0104903740
## 40 Source Book131 (Intercept) -0.099533926 -0.1207582090
## 41 Source Book132 (Intercept) -0.132233515 -0.1459400826
## 42 Source Book133 (Intercept) -0.046563028 -0.0373215541
## 43 Source Book134 (Intercept) -0.099215640 -0.0824087389
## 44 Source Book135 (Intercept) -0.081025062 -0.0870972728
## 45 Source Book136 (Intercept) -0.112771162 -0.0973638989
## 46 Source Book137 (Intercept) -0.071945809 -0.0610046277
## 47 Source Book138 (Intercept) -0.055669729 -0.0736183750
## 48 Source Book139 (Intercept) -0.123488748 -0.1338279538
## 49 Source Book14 (Intercept) 0.004010921 -0.0204996159
## 50 Source Book140 (Intercept) 0.017504624 -0.0159453144
## 51 Source Book141 (Intercept) -0.095068984 -0.0875634399
## 52 Source Book142 (Intercept) -0.006421892 0.0174458255
## 53 Source Book143 (Intercept) 0.004021176 0.0390287966
## 54 Source Book144 (Intercept) -0.087395584 -0.1083553116
## 55 Source Book145 (Intercept) -0.237871345 -0.2443592294
## 56 Source Book146 (Intercept) -0.013322538 0.0013589155
## 57 Source Book147 (Intercept) -0.064006501 -0.0855909355
## 58 Source Book148 (Intercept) 0.064051030 0.0782960587
## 59 Source Book149 (Intercept) 0.121434877 0.1461299333
## 60 Source Book15 (Intercept) -0.111770395 -0.1021581697
## 61 Source Book150 (Intercept) -0.180595810 -0.2113761628
## 62 Source Book151 (Intercept) -0.047082545 -0.0262241911
## 63 Source Book152 (Intercept) 0.274105197 0.2658646740
## 64 Source Book153 (Intercept) -0.219300088 -0.2185463629
## 65 Source Book154 (Intercept) -0.079142064 -0.0879778008
## 66 Source Book155 (Intercept) -0.190776297 -0.2020267579
## 67 Source Book156 (Intercept) -0.138248227 -0.0960578534
## 68 Source Book157 (Intercept) 0.010758568 -0.0063290761
## 69 Source Book158 (Intercept) 0.068853933 0.0597866888
## 70 Source Book159 (Intercept) -0.079845728 -0.1003614547
## 71 Source Book16 (Intercept) 0.063490299 0.0108488540
## 72 Source Book160 (Intercept) 0.064049746 0.0682238380
## 73 Source Book161 (Intercept) 0.180803746 0.1945485900
## 74 Source Book162 (Intercept) -0.052493709 -0.0530758850
## 75 Source Book163 (Intercept) -0.060078276 -0.0586189623
## 76 Source Book164 (Intercept) -0.199070391 -0.2135294239
## 77 Source Book165 (Intercept) -0.031399576 -0.0416852451
## 78 Source Book166 (Intercept) 0.071108638 0.1113509496
## 79 Source Book167 (Intercept) 0.053821756 0.0528120077
## 80 Source Book168 (Intercept) 0.051571239 0.0444761030
## 81 Source Book169 (Intercept) 0.421776242 0.4132545820
## 82 Source Book17 (Intercept) 0.372887794 0.4085416613
## 83 Source Book170 (Intercept) -0.201777330 -0.2553082170
## 84 Source Book171 (Intercept) -0.103487600 -0.1144136019
## 85 Source Book172 (Intercept) -0.018828678 0.0334603904
## 86 Source Book173 (Intercept) -0.113673268 -0.0897055758
## 87 Source Book174 (Intercept) -0.166427797 -0.1501161836
## 88 Source Book175 (Intercept) 0.048853420 0.0643001663
## 89 Source Book176 (Intercept) 0.232666102 0.2299496480
## 90 Source Book177 (Intercept) -0.173830154 -0.1859760629
## 91 Source Book178 (Intercept) -0.076378477 -0.0720706248
## 92 Source Book179 (Intercept) -0.107038475 -0.0740900983
## 93 Source Book18 (Intercept) 0.006097527 0.0134188513
## 94 Source Book180 (Intercept) -0.046042108 -0.0412606838
## 95 Source Book181 (Intercept) 0.186715446 0.1416380061
## 96 Source Book182 (Intercept) -0.049827484 -0.0431151386
## 97 Source Book183 (Intercept) -0.018398243 -0.0057251636
## 98 Source Book184 (Intercept) -0.176903473 -0.1503663732
## 99 Source Book185 (Intercept) 0.176811371 0.1382880793
## 100 Source Book186 (Intercept) -0.048734937 -0.0310475865
## 101 Source Book187 (Intercept) -0.179528909 -0.1595413687
## 102 Source Book188 (Intercept) -0.146897740 -0.1388104855
## 103 Source Book189 (Intercept) 0.094446554 0.0791194034
## 104 Source Book19 (Intercept) -0.312099496 -0.3427449837
## 105 Source Book190 (Intercept) -0.068653892 -0.0421035624
## 106 Source Book191 (Intercept) 0.037096444 0.0693435635
## 107 Source Book192 (Intercept) 0.056164719 0.0656678154
## 108 Source Book193 (Intercept) 0.053457757 0.0368574186
## 109 Source Book194 (Intercept) 0.071112263 0.0718063386
## 110 Source Book195 (Intercept) 0.022445620 0.0396254258
## 111 Source Book196 (Intercept) 0.183848567 0.2135516742
## 112 Source Book197 (Intercept) 0.251892568 0.2149840008
## 113 Source Book198 (Intercept) -0.275670863 -0.2803981001
## 114 Source Book199 (Intercept) 0.138460595 0.1267746476
## 115 Source Book2 (Intercept) 0.131655153 0.0950948696
## 116 Source Book20 (Intercept) 0.019921986 0.0298173009
## 117 Source Book200 (Intercept) -0.119326074 -0.1537404995
## 118 Source Book201 (Intercept) -0.230005439 -0.2452046222
## 119 Source Book202 (Intercept) -0.225273619 -0.2279940849
## 120 Source Book203 (Intercept) 0.047225946 0.0602268167
## 121 Source Book204 (Intercept) -0.024085466 0.0076916325
## 122 Source Book205 (Intercept) -0.003620036 0.0129617914
## 123 Source Book206 (Intercept) -0.195704937 -0.1979849605
## 124 Source Book207 (Intercept) 0.407392745 0.4138314850
## 125 Source Book208 (Intercept) 0.019680746 0.0269891552
## 126 Source Book209 (Intercept) 0.021930445 0.0433607672
## 127 Source Book21 (Intercept) 0.277953805 0.2596757975
## 128 Source Book210 (Intercept) 0.166840273 0.1587366620
## 129 Source Book211 (Intercept) -0.010046669 0.0215532522
## 130 Source Book212 (Intercept) 0.054724139 0.0440398617
## 131 Source Book213 (Intercept) -0.025444570 -0.0653290758
## 132 Source Book214 (Intercept) -0.002711284 -0.0206541046
## 133 Source Book215 (Intercept) 0.196993036 0.1784670997
## 134 Source Book216 (Intercept) -0.011722273 0.0020372213
## 135 Source Book217 (Intercept) -0.006982735 -0.0457028491
## 136 Source Book218 (Intercept) -0.093314932 -0.0949031699
## 137 Source Book219 (Intercept) 0.271536636 0.2858475092
## 138 Source Book22 (Intercept) -0.158546858 -0.1354472983
## 139 Source Book220 (Intercept) 0.083590673 0.0827338575
## 140 Source Book221 (Intercept) -0.088121804 -0.1072590709
## 141 Source Book222 (Intercept) -0.169832603 -0.1755644654
## 142 Source Book223 (Intercept) -0.136210160 -0.1407284108
## 143 Source Book224 (Intercept) 0.310632567 0.3579532926
## 144 Source Book225 (Intercept) 0.183447219 0.2015656652
## 145 Source Book226 (Intercept) 0.288348885 0.3043947541
## 146 Source Book227 (Intercept) -0.045291840 -0.0756115426
## 147 Source Book228 (Intercept) 0.053914797 0.0631576893
## 148 Source Book229 (Intercept) -0.176399608 -0.1710671174
## 149 Source Book23 (Intercept) 0.002595729 -0.0077289721
## 150 Source Book230 (Intercept) -0.115252593 -0.1304593692
## 151 Source Book231 (Intercept) -0.173728445 -0.1670428919
## 152 Source Book232 (Intercept) 0.218011116 0.1916121514
## 153 Source Book233 (Intercept) -0.136812466 -0.1246957121
## 154 Source Book234 (Intercept) -0.124275896 -0.1610474341
## 155 Source Book235 (Intercept) -0.065287075 -0.0746261760
## 156 Source Book236 (Intercept) 0.178547812 0.1745274152
## 157 Source Book237 (Intercept) 0.193059634 0.1767624413
## 158 Source Book238 (Intercept) -0.172478434 -0.1732190930
## 159 Source Book239 (Intercept) 0.226462639 0.2219567723
## 160 Source Book24 (Intercept) -0.025444485 -0.0355494277
## 161 Source Book240 (Intercept) -0.074443725 -0.0719528361
## 162 Source Book241 (Intercept) 0.026564686 0.0486085515
## 163 Source Book242 (Intercept) -0.242506321 -0.2269354537
## 164 Source Book243 (Intercept) -0.091756031 -0.0576299683
## 165 Source Book244 (Intercept) -0.114229896 -0.1115743336
## 166 Source Book245 (Intercept) -0.222447592 -0.2282191588
## 167 Source Book246 (Intercept) -0.144802785 -0.1166950494
## 168 Source Book247 (Intercept) -0.144913103 -0.1164519995
## 169 Source Book248 (Intercept) -0.168564597 -0.1572101165
## 170 Source Book249 (Intercept) -0.052110748 -0.0535061333
## 171 Source Book25 (Intercept) -0.086908105 -0.0442735980
## 172 Source Book250 (Intercept) -0.135233015 -0.1209648124
## 173 Source Book251 (Intercept) -0.091733775 -0.0718604154
## 174 Source Book252 (Intercept) 0.056857598 0.0457951212
## 175 Source Book253 (Intercept) 0.055171450 0.0369476124
## 176 Source Book254 (Intercept) -0.092382401 -0.0696915152
## 177 Source Book255 (Intercept) 0.021961226 0.0300178725
## 178 Source Book256 (Intercept) 0.394405495 0.3954346992
## 179 Source Book257 (Intercept) 0.089558815 0.0875659915
## 180 Source Book258 (Intercept) -0.206446720 -0.2313381981
## 181 Source Book259 (Intercept) -0.011371814 -0.0289695612
## 182 Source Book26 (Intercept) -0.177994994 -0.1721863020
## 183 Source Book260 (Intercept) -0.044125615 0.0011804255
## 184 Source Book261 (Intercept) 0.172501641 0.1814680910
## 185 Source Book262 (Intercept) 0.228142944 0.2364109738
## 186 Source Book263 (Intercept) 0.119722750 0.1486488097
## 187 Source Book264 (Intercept) -0.101787379 -0.0936342927
## 188 Source Book265 (Intercept) -0.119357277 -0.1012927287
## 189 Source Book266 (Intercept) -0.109303168 -0.1282209928
## 190 Source Book267 (Intercept) 0.157688167 0.1737865050
## 191 Source Book268 (Intercept) 0.262308675 0.2705937425
## 192 Source Book269 (Intercept) 0.005746812 0.0098766687
## 193 Source Book27 (Intercept) 0.131036795 0.1626273833
## 194 Source Book270 (Intercept) 0.218084337 0.2366240365
## 195 Source Book271 (Intercept) 0.076768445 0.0842893519
## 196 Source Book272 (Intercept) 0.269333682 0.2516179644
## 197 Source Book273 (Intercept) -0.224872091 -0.2408870098
## 198 Source Book274 (Intercept) 0.070421363 0.0888500497
## 199 Source Book275 (Intercept) 0.003790868 0.0162344451
## 200 Source Book276 (Intercept) 0.115341991 0.1067700428
## 201 Source Book277 (Intercept) -0.243087857 -0.2695769979
## 202 Source Book278 (Intercept) -0.221526021 -0.2218705474
## 203 Source Book279 (Intercept) -0.011859706 0.0152619438
## 204 Source Book28 (Intercept) 0.032275303 -0.0093031237
## 205 Source Book280 (Intercept) 0.236625353 0.2152124429
## 206 Source Book281 (Intercept) 0.007310335 0.0194179788
## 207 Source Book282 (Intercept) 0.120934103 0.1280016034
## 208 Source Book283 (Intercept) -0.043308712 -0.0318005389
## 209 Source Book284 (Intercept) 0.085432916 0.1113803012
## 210 Source Book285 (Intercept) -0.095789949 -0.1072221836
## 211 Source Book286 (Intercept) 0.133731189 0.1433990983
## 212 Source Book287 (Intercept) 0.039113936 0.0310613191
## 213 Source Book288 (Intercept) -0.029544490 -0.0334636923
## 214 Source Book289 (Intercept) 0.047671759 0.0562548167
## 215 Source Book29 (Intercept) -0.125079217 -0.1264990678
## 216 Source Book290 (Intercept) -0.158831236 -0.1528420223
## 217 Source Book291 (Intercept) 0.017647591 0.0245283093
## 218 Source Book292 (Intercept) -0.027812208 -0.0161727026
## 219 Source Book293 (Intercept) 0.040219612 0.0201004530
## 220 Source Book294 (Intercept) 0.250893712 0.2501592897
## 221 Source Book295 (Intercept) 0.089072435 0.0757070502
## 222 Source Book296 (Intercept) 0.072299596 0.0475801005
## 223 Source Book297 (Intercept) 0.014709379 0.0252107521
## 224 Source Book298 (Intercept) 0.017762066 -0.0101848183
## 225 Source Book299 (Intercept) -0.148427038 -0.1370890668
## 226 Source Book3 (Intercept) -0.095394440 -0.0674395242
## 227 Source Book30 (Intercept) -0.166313280 -0.1632864779
## 228 Source Book300 (Intercept) -0.057577206 -0.1002510470
## 229 Source Book31 (Intercept) -0.086368489 -0.1070090688
## 230 Source Book32 (Intercept) -0.131527850 -0.1640798349
## 231 Source Book33 (Intercept) -0.019432734 -0.0092206053
## 232 Source Book34 (Intercept) 0.135680338 0.1193518205
## 233 Source Book35 (Intercept) -0.033408692 -0.0459443502
## 234 Source Book36 (Intercept) -0.164228926 -0.1598224299
## 235 Source Book37 (Intercept) -0.122154918 -0.1230610050
## 236 Source Book38 (Intercept) 0.094678582 0.0993534345
## 237 Source Book39 (Intercept) 0.010881217 -0.0102718446
## 238 Source Book4 (Intercept) 0.194340317 0.1993134375
## 239 Source Book40 (Intercept) 0.174415281 0.1330619865
## 240 Source Book41 (Intercept) -0.050285777 0.0054381398
## 241 Source Book42 (Intercept) -0.101567525 -0.1154954921
## 242 Source Book43 (Intercept) -0.153407297 -0.1192370843
## 243 Source Book44 (Intercept) 0.310679946 0.3181836835
## 244 Source Book45 (Intercept) 0.086826711 0.0896198084
## 245 Source Book46 (Intercept) 0.014877349 0.0144210527
## 246 Source Book47 (Intercept) -0.396147385 -0.3495655488
## 247 Source Book48 (Intercept) 0.108751883 0.1086808116
## 248 Source Book49 (Intercept) -0.166784449 -0.1550991199
## 249 Source Book5 (Intercept) -0.104272533 -0.0765224507
## 250 Source Book50 (Intercept) 0.108876333 0.1145877458
## 251 Source Book51 (Intercept) -0.007260960 0.0035207949
## 252 Source Book52 (Intercept) 0.006884530 0.0148190146
## 253 Source Book53 (Intercept) -0.132637280 -0.1302155349
## 254 Source Book54 (Intercept) -0.141557499 -0.1700055789
## 255 Source Book55 (Intercept) -0.088612766 -0.0790832098
## 256 Source Book56 (Intercept) 0.063929637 0.0479946762
## 257 Source Book57 (Intercept) -0.077442518 -0.0748630983
## 258 Source Book58 (Intercept) 0.034063609 0.0534435811
## 259 Source Book59 (Intercept) -0.151603113 -0.1384518530
## 260 Source Book6 (Intercept) -0.133459544 -0.1378634504
## 261 Source Book60 (Intercept) -0.034866117 -0.0350174623
## 262 Source Book61 (Intercept) 0.178268120 0.1998236508
## 263 Source Book62 (Intercept) -0.103941403 -0.0958744071
## 264 Source Book63 (Intercept) 0.054126395 0.0461207431
## 265 Source Book64 (Intercept) -0.034917500 -0.0137367020
## 266 Source Book65 (Intercept) -0.048514125 -0.0676042077
## 267 Source Book66 (Intercept) 0.046002159 0.0511691468
## 268 Source Book67 (Intercept) -0.080180541 -0.0846292943
## 269 Source Book68 (Intercept) 0.172680567 0.1648237871
## 270 Source Book69 (Intercept) -0.081151336 -0.0790620798
## 271 Source Book7 (Intercept) 0.309395935 0.3289635218
## 272 Source Book70 (Intercept) -0.067808119 -0.0467764523
## 273 Source Book71 (Intercept) 0.117479489 0.1119788365
## 274 Source Book72 (Intercept) 0.133622781 0.1343208390
## 275 Source Book73 (Intercept) 0.149898631 0.1625917114
## 276 Source Book74 (Intercept) -0.091717462 -0.0660948809
## 277 Source Book75 (Intercept) -0.018140665 -0.0533932742
## 278 Source Book76 (Intercept) -0.053895707 -0.0537004526
## 279 Source Book77 (Intercept) -0.333284528 -0.3522654471
## 280 Source Book78 (Intercept) 0.048629566 0.0273798183
## 281 Source Book79 (Intercept) -0.023507266 -0.0266770446
## 282 Source Book8 (Intercept) -0.207893263 -0.2359085004
## 283 Source Book80 (Intercept) 0.139112747 0.1581649111
## 284 Source Book81 (Intercept) 0.063446035 0.0746008430
## 285 Source Book82 (Intercept) -0.003430520 -0.0048429409
## 286 Source Book83 (Intercept) -0.277774498 -0.2753465318
## 287 Source Book84 (Intercept) -0.051450510 -0.0816912412
## 288 Source Book85 (Intercept) 0.432598062 0.4430519725
## 289 Source Book86 (Intercept) 0.118638436 0.1086829115
## 290 Source Book87 (Intercept) -0.088137243 -0.0914314596
## 291 Source Book88 (Intercept) -0.262033895 -0.2854179796
## 292 Source Book89 (Intercept) 0.263937227 0.2652945915
## 293 Source Book9 (Intercept) 0.024860308 0.0401238140
## 294 Source Book90 (Intercept) 0.056190959 0.0630078661
## 295 Source Book91 (Intercept) -0.017652857 -0.0287224787
## 296 Source Book92 (Intercept) 0.405634157 0.3698238495
## 297 Source Book93 (Intercept) -0.026632187 -0.0170755323
## 298 Source Book94 (Intercept) -0.175341008 -0.1877755357
## 299 Source Book95 (Intercept) -0.245399134 -0.2468292880
## 300 Source Book96 (Intercept) -0.089245593 -0.0556343360
## 301 Source Book97 (Intercept) 0.170534324 0.2099812022
## 302 Source Book98 (Intercept) -0.025486349 -0.0150206229
## 303 Source Book99 (Intercept) -0.255736933 -0.2753026966
## 304 Source Dogo (Intercept) 0.070334118 0.0476096429
## 305 Source Ducksters (Intercept) -0.040303297 -0.0322160157
## 306 Source EIM (Intercept) 0.217556611 0.2006593127
## 307 Source Encyclopedia (Intercept) -0.292103466 -0.3218605693
## 308 Source Factmonster (Intercept) 0.167354143 0.1961132123
## 309 Source GreenLine (Intercept) 0.001995317 -0.0007061291
## 310 Source History (Intercept) 0.129750531 0.1489608644
## 311 Source HT (Intercept) 0.132097991 0.1426457149
## 312 Source JTT (Intercept) 0.236575362 0.2249080122
## 313 Source NGL (Intercept) -0.156088192 -0.1432969928
## 314 Source POC (Intercept) -0.186088580 -0.2217920942
## 315 Source Quatr (Intercept) -0.015232966 -0.0380242221
## 316 Source Revision (Intercept) -0.357336875 -0.3293842705
## 317 Source Science (Intercept) -0.271435225 -0.2705852540
## 318 Source Science_Tech (Intercept) -0.585873776 -0.5989298220
## 319 Source Solutions (Intercept) 0.360451350 0.3732190812
## 320 Source Spoken.BNC2014 (Intercept) -0.037375286 -0.0360133157
## 321 Source Teen (Intercept) 0.204644066 0.2409499730
## 322 Source TeenVogue (Intercept) 0.363586789 0.3643389315
## 323 Source TweenTribute (Intercept) 0.140974193 0.1393586588
## 324 Source WhyFiles (Intercept) 0.105622576 0.1410344643
## 325 Source World (Intercept) 0.013135661 0.0075329267
## 326 Source Access RegisterFiction 1.393783466 1.3958320702
## 327 Source Achievers RegisterFiction 0.687159395 0.7071152111
## 328 Source BBC RegisterFiction -1.009753739 -0.9048185929
## 329 Source Book1 RegisterFiction 0.081607307 0.1109487190
## 330 Source Book10 RegisterFiction -1.070297924 -1.0499918925
## 331 Source Book100 RegisterFiction 0.317299252 0.3810496237
## 332 Source Book101 RegisterFiction -1.398332518 -1.4053218336
## 333 Source Book102 RegisterFiction -0.690482419 -0.6762544852
## 334 Source Book103 RegisterFiction 1.062729311 1.0805292292
## 335 Source Book104 RegisterFiction -1.620680285 -1.6437474898
## 336 Source Book105 RegisterFiction -1.482639516 -1.5237160446
## 337 Source Book106 RegisterFiction -1.575692332 -1.6136094340
## 338 Source Book107 RegisterFiction 0.654384463 0.6677600581
## 339 Source Book108 RegisterFiction 1.606832946 1.6049979691
## 340 Source Book109 RegisterFiction 0.441530607 0.4929262866
## 341 Source Book11 RegisterFiction -0.880392522 -0.8617769225
## 342 Source Book110 RegisterFiction -1.270929220 -1.2675886525
## 343 Source Book111 RegisterFiction -4.054156477 -4.0673894619
## 344 Source Book112 RegisterFiction 0.794227265 0.7764494733
## 345 Source Book113 RegisterFiction 0.457032295 0.4455684234
## 346 Source Book114 RegisterFiction 0.771858096 0.8214472845
## 347 Source Book115 RegisterFiction -1.694254281 -1.7220726054
## 348 Source Book116 RegisterFiction -2.169250652 -2.1851767191
## 349 Source Book117 RegisterFiction 1.530484578 1.5257124593
## 350 Source Book118 RegisterFiction -0.380140312 -0.4035806124
## 351 Source Book119 RegisterFiction 0.096977872 0.1538213060
## 352 Source Book12 RegisterFiction 0.950868356 0.9717707465
## 353 Source Book120 RegisterFiction 0.316418294 0.3306237075
## 354 Source Book121 RegisterFiction 0.688813057 0.6665993645
## 355 Source Book122 RegisterFiction -0.987221770 -0.9344817745
## 356 Source Book123 RegisterFiction 0.698967345 0.6931809758
## 357 Source Book124 RegisterFiction 0.253349539 0.2546288186
## 358 Source Book125 RegisterFiction -1.814455407 -1.8230512990
## 359 Source Book126 RegisterFiction 0.629250785 0.5745082612
## 360 Source Book127 RegisterFiction 0.381357510 0.3276142734
## 361 Source Book128 RegisterFiction 0.929512689 0.9491792137
## 362 Source Book129 RegisterFiction 1.218451642 1.2014978321
## 363 Source Book13 RegisterFiction -1.593103962 -1.6277232144
## 364 Source Book130 RegisterFiction 0.045488444 0.0885725867
## 365 Source Book131 RegisterFiction 0.775726831 0.7397418648
## 366 Source Book132 RegisterFiction 1.653980630 1.6171882149
## 367 Source Book133 RegisterFiction 0.650123834 0.6391520359
## 368 Source Book134 RegisterFiction 0.554288224 0.5759566282
## 369 Source Book135 RegisterFiction 0.424799169 0.4388543745
## 370 Source Book136 RegisterFiction 0.907641688 0.9211043143
## 371 Source Book137 RegisterFiction 0.679618069 0.6716562749
## 372 Source Book138 RegisterFiction -0.196581086 -0.2451024007
## 373 Source Book139 RegisterFiction 1.109376279 1.1642830056
## 374 Source Book14 RegisterFiction -0.213881834 -0.2129190004
## 375 Source Book140 RegisterFiction 0.300318082 0.3688819441
## 376 Source Book141 RegisterFiction 0.817910996 0.7965277412
## 377 Source Book142 RegisterFiction 0.027878080 0.0227947479
## 378 Source Book143 RegisterFiction 0.310892860 0.3121315454
## 379 Source Book144 RegisterFiction 1.121877463 1.1128523523
## 380 Source Book145 RegisterFiction 2.321926192 2.3660115332
## 381 Source Book146 RegisterFiction 0.297322218 0.3158617871
## 382 Source Book147 RegisterFiction 0.498564136 0.5301921155
## 383 Source Book148 RegisterFiction -0.573535666 -0.5837413566
## 384 Source Book149 RegisterFiction -1.308939622 -1.3415024260
## 385 Source Book15 RegisterFiction 0.962864883 0.9256745524
## 386 Source Book150 RegisterFiction 1.797880387 1.8610108675
## 387 Source Book151 RegisterFiction 0.332808760 0.3391292823
## 388 Source Book152 RegisterFiction -2.747636573 -2.7389220310
## 389 Source Book153 RegisterFiction 2.095783130 2.0749323185
## 390 Source Book154 RegisterFiction 0.648010737 0.6691286343
## 391 Source Book155 RegisterFiction 1.874473747 1.8789517355
## 392 Source Book156 RegisterFiction 1.229351717 1.2504145810
## 393 Source Book157 RegisterFiction 0.121994118 0.1485104349
## 394 Source Book158 RegisterFiction -0.709816110 -0.6187268858
## 395 Source Book159 RegisterFiction 1.006417515 1.0606237804
## 396 Source Book16 RegisterFiction -0.741493390 -0.7627431640
## 397 Source Book160 RegisterFiction -0.619931230 -0.5369033273
## 398 Source Book161 RegisterFiction -1.997010787 -1.9997060880
## 399 Source Book162 RegisterFiction 0.437045937 0.4829799612
## 400 Source Book163 RegisterFiction 0.715602451 0.7134540228
## 401 Source Book164 RegisterFiction 1.876808502 1.8243235811
## 402 Source Book165 RegisterFiction 0.716198211 0.6851886254
## 403 Source Book166 RegisterFiction -0.484756106 -0.5555498282
## 404 Source Book167 RegisterFiction -0.512044078 -0.4708654167
## 405 Source Book168 RegisterFiction 0.007791643 -0.0131165662
## 406 Source Book169 RegisterFiction -4.165086556 -4.1911831862
## 407 Source Book17 RegisterFiction -3.970726382 -3.9607325015
## 408 Source Book170 RegisterFiction 2.131686044 2.1402309963
## 409 Source Book171 RegisterFiction 1.082270676 1.1004458657
## 410 Source Book172 RegisterFiction 0.513124178 0.5569665812
## 411 Source Book173 RegisterFiction 1.017027164 0.9835211719
## 412 Source Book174 RegisterFiction 1.961640668 1.9674964819
## 413 Source Book175 RegisterFiction -0.788159984 -0.7262845070
## 414 Source Book176 RegisterFiction -2.496251348 -2.4354372985
## 415 Source Book177 RegisterFiction 1.771339107 1.7715063406
## 416 Source Book178 RegisterFiction 0.693729978 0.6964749488
## 417 Source Book179 RegisterFiction 0.970081031 0.9714494914
## 418 Source Book18 RegisterFiction -0.457724466 -0.5053373537
## 419 Source Book180 RegisterFiction 0.563816371 0.6291850231
## 420 Source Book181 RegisterFiction -2.117214792 -2.0680054131
## 421 Source Book182 RegisterFiction 0.908229564 0.8952432454
## 422 Source Book183 RegisterFiction 0.477505953 0.5263760216
## 423 Source Book184 RegisterFiction 1.306673544 1.3336849401
## 424 Source Book185 RegisterFiction -1.907667431 -1.9144836498
## 425 Source Book186 RegisterFiction 0.334633658 0.3079162647
## 426 Source Book187 RegisterFiction 1.454266575 1.4150976351
## 427 Source Book188 RegisterFiction 2.044531663 1.9792650542
## 428 Source Book189 RegisterFiction -1.302396593 -1.2741542323
## 429 Source Book19 RegisterFiction 2.787920331 2.7770100053
## 430 Source Book190 RegisterFiction 0.755611584 0.7422552642
## 431 Source Book191 RegisterFiction -0.642405481 -0.6100620048
## 432 Source Book192 RegisterFiction -0.293292306 -0.3163142794
## 433 Source Book193 RegisterFiction -0.292985641 -0.3268323216
## 434 Source Book194 RegisterFiction -0.697490590 -0.7098505307
## 435 Source Book195 RegisterFiction -0.075319956 -0.0802412006
## 436 Source Book196 RegisterFiction -2.048656638 -2.0775509710
## 437 Source Book197 RegisterFiction -2.753846527 -2.7235238291
## 438 Source Book198 RegisterFiction 2.870988734 2.8664359433
## 439 Source Book199 RegisterFiction -1.311991326 -1.2882592879
## 440 Source Book2 RegisterFiction -1.238109160 -1.2430262902
## 441 Source Book20 RegisterFiction -0.453989504 -0.4094322603
## 442 Source Book200 RegisterFiction 0.550914040 0.5748614725
## 443 Source Book201 RegisterFiction 2.529652445 2.5423804731
## 444 Source Book202 RegisterFiction 2.704326916 2.6959174720
## 445 Source Book203 RegisterFiction -0.728419958 -0.6837967729
## 446 Source Book204 RegisterFiction 0.188562007 0.1949770383
## 447 Source Book205 RegisterFiction -0.008440720 -0.0093557950
## 448 Source Book206 RegisterFiction 1.622706997 1.6545004514
## 449 Source Book207 RegisterFiction -4.361393173 -4.3513018919
## 450 Source Book208 RegisterFiction -0.432850700 -0.4262214782
## 451 Source Book209 RegisterFiction -0.490151491 -0.4558934066
## 452 Source Book21 RegisterFiction -3.013745741 -3.0025801207
## 453 Source Book210 RegisterFiction -1.409937438 -1.4535563222
## 454 Source Book211 RegisterFiction 0.307185478 0.3648328780
## 455 Source Book212 RegisterFiction -0.306010742 -0.3272809480
## 456 Source Book213 RegisterFiction 0.217807551 0.2046680341
## 457 Source Book214 RegisterFiction -0.122631995 -0.0928289349
## 458 Source Book215 RegisterFiction -2.073683334 -2.0710263190
## 459 Source Book216 RegisterFiction -0.443245776 -0.4536002582
## 460 Source Book217 RegisterFiction -0.585828486 -0.5978374405
## 461 Source Book218 RegisterFiction 0.664688720 0.6753268975
## 462 Source Book219 RegisterFiction -2.668771581 -2.6677082238
## 463 Source Book22 RegisterFiction 1.696832089 1.7006189779
## 464 Source Book220 RegisterFiction -0.716928942 -0.7125112196
## 465 Source Book221 RegisterFiction 1.130540640 1.1416463599
## 466 Source Book222 RegisterFiction 1.652617207 1.5761487640
## 467 Source Book223 RegisterFiction 1.331849331 1.2955958519
## 468 Source Book224 RegisterFiction -2.933741893 -2.9492002725
## 469 Source Book225 RegisterFiction -1.699409625 -1.6672445234
## 470 Source Book226 RegisterFiction -2.914076577 -2.9263788954
## 471 Source Book227 RegisterFiction 0.111192328 0.0962545620
## 472 Source Book228 RegisterFiction -0.497166312 -0.4275632239
## 473 Source Book229 RegisterFiction 1.927877738 1.9462260671
## 474 Source Book23 RegisterFiction 0.182225999 0.1808338288
## 475 Source Book230 RegisterFiction 1.197096120 1.1161880294
## 476 Source Book231 RegisterFiction 1.648694002 1.6000782051
## 477 Source Book232 RegisterFiction -2.349918988 -2.2618665657
## 478 Source Book233 RegisterFiction 1.280756641 1.2461083830
## 479 Source Book234 RegisterFiction 1.282435411 1.2407812983
## 480 Source Book235 RegisterFiction 0.170682529 0.1727781090
## 481 Source Book236 RegisterFiction -1.369140408 -1.3622382173
## 482 Source Book237 RegisterFiction -2.004440195 -1.9636964165
## 483 Source Book238 RegisterFiction 1.724858881 1.7231951113
## 484 Source Book239 RegisterFiction -2.460538304 -2.4888250079
## 485 Source Book24 RegisterFiction 0.309831458 0.3004493792
## 486 Source Book240 RegisterFiction 0.621971893 0.6253612957
## 487 Source Book241 RegisterFiction -0.454986743 -0.4709744621
## 488 Source Book242 RegisterFiction 2.269219775 2.3187256396
## 489 Source Book243 RegisterFiction 1.108602689 1.0891957464
## 490 Source Book244 RegisterFiction 0.859722299 0.7994830211
## 491 Source Book245 RegisterFiction 2.239384288 2.2512687310
## 492 Source Book246 RegisterFiction 1.183054453 1.2302416101
## 493 Source Book247 RegisterFiction 1.185816162 1.1848332460
## 494 Source Book248 RegisterFiction 1.876852752 1.8695672785
## 495 Source Book249 RegisterFiction 0.109370966 0.1251970027
## 496 Source Book25 RegisterFiction 0.905046383 0.8877703952
## 497 Source Book250 RegisterFiction 1.848285644 1.8275184293
## 498 Source Book251 RegisterFiction 0.959103796 1.0023676006
## 499 Source Book252 RegisterFiction -0.462841551 -0.4098623631
## 500 Source Book253 RegisterFiction -0.394763569 -0.3715733441
## 501 Source Book254 RegisterFiction 0.777548397 0.7731346648
## 502 Source Book255 RegisterFiction 0.093465796 0.1331922147
## 503 Source Book256 RegisterFiction -4.454168412 -4.4671113742
## 504 Source Book257 RegisterFiction -0.582764229 -0.5797232293
## 505 Source Book258 RegisterFiction 1.679954512 1.6206251724
## 506 Source Book259 RegisterFiction 0.377311525 0.3931701648
## 507 Source Book26 RegisterFiction 1.847021043 1.8879979011
## 508 Source Book260 RegisterFiction -0.036792860 -0.0131820808
## 509 Source Book261 RegisterFiction -2.258915665 -2.2591546814
## 510 Source Book262 RegisterFiction -1.965289895 -1.9889479230
## 511 Source Book263 RegisterFiction -1.364290121 -1.3307255155
## 512 Source Book264 RegisterFiction 1.088793861 1.0842588455
## 513 Source Book265 RegisterFiction 1.327042565 1.3357467963
## 514 Source Book266 RegisterFiction 0.959248564 0.8797890319
## 515 Source Book267 RegisterFiction -1.367207203 -1.3198812570
## 516 Source Book268 RegisterFiction -2.437526879 -2.4291101055
## 517 Source Book269 RegisterFiction 0.310297845 0.3533100531
## 518 Source Book27 RegisterFiction -1.246085010 -1.2104432585
## 519 Source Book270 RegisterFiction -2.559628170 -2.6334046859
## 520 Source Book271 RegisterFiction -0.837239995 -0.8088103069
## 521 Source Book272 RegisterFiction -2.541317869 -2.5579384930
## 522 Source Book273 RegisterFiction 2.185863144 2.1909084505
## 523 Source Book274 RegisterFiction -0.454225982 -0.4167334065
## 524 Source Book275 RegisterFiction 0.384918794 0.3925464203
## 525 Source Book276 RegisterFiction -1.376600966 -1.3877665654
## 526 Source Book277 RegisterFiction 2.418897485 2.4516238900
## 527 Source Book278 RegisterFiction 2.028022969 2.0773599166
## 528 Source Book279 RegisterFiction -0.076697366 -0.0404993802
## 529 Source Book28 RegisterFiction -0.287694162 -0.2616216403
## 530 Source Book280 RegisterFiction -2.219548749 -2.1857132023
## 531 Source Book281 RegisterFiction 0.404647638 0.4189915660
## 532 Source Book282 RegisterFiction -1.714444761 -1.7131855230
## 533 Source Book283 RegisterFiction 0.881267762 0.9141247036
## 534 Source Book284 RegisterFiction -1.149409748 -1.1014841906
## 535 Source Book285 RegisterFiction 1.223060376 1.2584049486
## 536 Source Book286 RegisterFiction -1.151802308 -1.2347274640
## 537 Source Book287 RegisterFiction -0.654116010 -0.6760458898
## 538 Source Book288 RegisterFiction 0.167273814 0.1194848357
## 539 Source Book289 RegisterFiction -0.153487472 -0.1844203319
## 540 Source Book29 RegisterFiction 1.293508887 1.2728586734
## 541 Source Book290 RegisterFiction 1.964324027 1.8862510431
## 542 Source Book291 RegisterFiction -0.347738027 -0.3403090063
## 543 Source Book292 RegisterFiction 0.362007903 0.3722871965
## 544 Source Book293 RegisterFiction -0.399603718 -0.3610929027
## 545 Source Book294 RegisterFiction -2.801211865 -2.8263249007
## 546 Source Book295 RegisterFiction -1.134056569 -1.2058602976
## 547 Source Book296 RegisterFiction -0.307186779 -0.3327996030
## 548 Source Book297 RegisterFiction -0.263455352 -0.2726065680
## 549 Source Book298 RegisterFiction -0.523772320 -0.5005785443
## 550 Source Book299 RegisterFiction 1.320560041 1.3255321870
## 551 Source Book3 RegisterFiction 0.908755402 0.8946153943
## 552 Source Book30 RegisterFiction 1.528863490 1.5582512243
## 553 Source Book300 RegisterFiction 0.667115935 0.6921409849
## 554 Source Book31 RegisterFiction 1.032457109 1.0420945157
## 555 Source Book32 RegisterFiction 1.342257203 1.3730207003
## 556 Source Book33 RegisterFiction 0.217563474 0.2025109609
## 557 Source Book34 RegisterFiction -1.681472420 -1.6835514311
## 558 Source Book35 RegisterFiction 0.010723174 0.0276192586
## 559 Source Book36 RegisterFiction 1.822199487 1.8338474643
## 560 Source Book37 RegisterFiction 1.154791305 1.2142968594
## 561 Source Book38 RegisterFiction -0.237960580 -0.2462860704
## 562 Source Book39 RegisterFiction -0.223645181 -0.2547454404
## 563 Source Book4 RegisterFiction -1.973544646 -1.9767192967
## 564 Source Book40 RegisterFiction -1.442484809 -1.4337467417
## 565 Source Book41 RegisterFiction 0.517188158 0.5498533295
## 566 Source Book42 RegisterFiction 0.732347888 0.7742303565
## 567 Source Book43 RegisterFiction 1.616281989 1.6583427603
## 568 Source Book44 RegisterFiction -3.332229949 -3.3249563089
## 569 Source Book45 RegisterFiction -0.454336978 -0.4932560828
## 570 Source Book46 RegisterFiction -0.015835846 -0.0318698593
## 571 Source Book47 RegisterFiction 3.893275842 3.8540811098
## 572 Source Book48 RegisterFiction -1.034900869 -0.9936288122
## 573 Source Book49 RegisterFiction 1.374533670 1.3205574743
## 574 Source Book5 RegisterFiction 1.276497854 1.2397871445
## 575 Source Book50 RegisterFiction -1.165028714 -1.1562994438
## 576 Source Book51 RegisterFiction 0.066141114 0.1211266986
## 577 Source Book52 RegisterFiction 0.094098649 0.0546472219
## 578 Source Book53 RegisterFiction 1.441769875 1.4529045834
## 579 Source Book54 RegisterFiction 1.196774901 1.2648318740
## 580 Source Book55 RegisterFiction 0.771121395 0.7875873564
## 581 Source Book56 RegisterFiction -0.800466869 -0.7807074013
## 582 Source Book57 RegisterFiction 1.028280179 0.9941053478
## 583 Source Book58 RegisterFiction -0.682794795 -0.7135319168
## 584 Source Book59 RegisterFiction 1.575887831 1.5431366516
## 585 Source Book6 RegisterFiction 1.181582136 1.2475271353
## 586 Source Book60 RegisterFiction 0.031072282 0.0168456769
## 587 Source Book61 RegisterFiction -1.929073640 -1.9456274089
## 588 Source Book62 RegisterFiction 1.230652847 1.1859019262
## 589 Source Book63 RegisterFiction -0.437002703 -0.4849873738
## 590 Source Book64 RegisterFiction 0.379205886 0.4125181799
## 591 Source Book65 RegisterFiction 0.257902567 0.2908936097
## 592 Source Book66 RegisterFiction -0.770130794 -0.6776503932
## 593 Source Book67 RegisterFiction 1.356993816 1.3110669149
## 594 Source Book68 RegisterFiction -1.697641584 -1.7047346354
## 595 Source Book69 RegisterFiction 0.582279804 0.5765466988
## 596 Source Book7 RegisterFiction -2.968228943 -2.9826768909
## 597 Source Book70 RegisterFiction 0.856049731 0.7986389477
## 598 Source Book71 RegisterFiction -1.345258592 -1.2730308759
## 599 Source Book72 RegisterFiction -1.734756756 -1.7466368849
## 600 Source Book73 RegisterFiction -1.030004123 -1.0960278323
## 601 Source Book74 RegisterFiction 1.040436416 1.0984238084
## 602 Source Book75 RegisterFiction -0.201857950 -0.1741129739
## 603 Source Book76 RegisterFiction 0.702756260 0.7315024477
## 604 Source Book77 RegisterFiction 2.971191258 2.9232986579
## 605 Source Book78 RegisterFiction -0.978114503 -0.9665276756
## 606 Source Book79 RegisterFiction 0.485447905 0.4908163534
## 607 Source Book8 RegisterFiction 1.915754890 1.9717433559
## 608 Source Book80 RegisterFiction -1.340239162 -1.2841552493
## 609 Source Book81 RegisterFiction -0.528189408 -0.5594438858
## 610 Source Book82 RegisterFiction 0.198123681 0.2091579281
## 611 Source Book83 RegisterFiction 2.483827878 2.4562304995
## 612 Source Book84 RegisterFiction 0.022392903 0.0546203113
## 613 Source Book85 RegisterFiction -4.591028860 -4.4940009012
## 614 Source Book86 RegisterFiction -1.570013061 -1.5043055028
## 615 Source Book87 RegisterFiction 0.638334817 0.6080494253
## 616 Source Book88 RegisterFiction 2.543378129 2.5327830890
## 617 Source Book89 RegisterFiction -2.657077200 -2.6528579600
## 618 Source Book9 RegisterFiction -0.687880613 -0.6361232744
## 619 Source Book90 RegisterFiction -0.792942411 -0.8148025382
## 620 Source Book91 RegisterFiction 0.076778410 0.0680730374
## 621 Source Book92 RegisterFiction -4.234785371 -4.2830430678
## 622 Source Book93 RegisterFiction -0.246799163 -0.2944785518
## 623 Source Book94 RegisterFiction 1.925473803 1.8798119917
## 624 Source Book95 RegisterFiction 2.874132360 2.9633590703
## 625 Source Book96 RegisterFiction 1.011257727 0.9890626990
## 626 Source Book97 RegisterFiction -1.934151714 -1.8798688739
## 627 Source Book98 RegisterFiction 0.107246342 0.0918514451
## 628 Source Book99 RegisterFiction 2.102733495 2.0604456307
## 629 Source Dogo RegisterFiction -0.527519953 -0.4885565344
## 630 Source Ducksters RegisterFiction 0.164702108 0.0954029650
## 631 Source EIM RegisterFiction 0.666647877 0.6767587399
## 632 Source Encyclopedia RegisterFiction 1.652913871 1.6256015351
## 633 Source Factmonster RegisterFiction -0.835419504 -0.8751350116
## 634 Source GreenLine RegisterFiction -0.539924233 -0.5572671189
## 635 Source History RegisterFiction -0.998965694 -1.0157097175
## 636 Source HT RegisterFiction 0.066862553 0.0345654582
## 637 Source JTT RegisterFiction -0.022046388 -0.0169124668
## 638 Source NGL RegisterFiction -0.933877123 -0.9363595004
## 639 Source POC RegisterFiction 0.588537808 0.6062411044
## 640 Source Quatr RegisterFiction 0.047899997 0.0556709701
## 641 Source Revision RegisterFiction 1.828427290 1.7942572331
## 642 Source Science RegisterFiction 1.382635623 1.3104711708
## 643 Source Science_Tech RegisterFiction 3.297640803 3.3411184079
## 644 Source Solutions RegisterFiction -1.864877835 -1.8564894231
## 645 Source Spoken.BNC2014 RegisterFiction -0.011688098 -0.0634872055
## 646 Source Teen RegisterFiction -1.060164970 -1.0552850841
## 647 Source TeenVogue RegisterFiction -2.067091164 -2.0844182580
## 648 Source TweenTribute RegisterFiction -0.773685432 -0.7486021125
## 649 Source WhyFiles RegisterFiction -0.807598539 -0.8143884371
## 650 Source World RegisterFiction -0.162190274 -0.1663577262
## 651 Source Access RegisterInformative 0.565841885 0.5777657173
## 652 Source Achievers RegisterInformative -0.353756050 -0.3407308554
## 653 Source BBC RegisterInformative 0.662416606 0.6371892304
## 654 Source Book1 RegisterInformative -0.013318466 0.0079171386
## 655 Source Book10 RegisterInformative 0.347015775 0.3331657153
## 656 Source Book100 RegisterInformative -0.121295389 -0.1420589683
## 657 Source Book101 RegisterInformative 0.515370137 0.5294474773
## 658 Source Book102 RegisterInformative 0.280827427 0.2796908100
## 659 Source Book103 RegisterInformative -0.338259761 -0.3587391191
## 660 Source Book104 RegisterInformative 0.493957361 0.4823920879
## 661 Source Book105 RegisterInformative 0.475912373 0.4434844618
## 662 Source Book106 RegisterInformative 0.503534973 0.4882444854
## 663 Source Book107 RegisterInformative -0.202271895 -0.1750622034
## 664 Source Book108 RegisterInformative -0.546587112 -0.5867650947
## 665 Source Book109 RegisterInformative -0.147908281 -0.1281621766
## 666 Source Book11 RegisterInformative 0.311165865 0.3189785702
## 667 Source Book110 RegisterInformative 0.462278991 0.4424396392
## 668 Source Book111 RegisterInformative 1.430139411 1.4811407948
## 669 Source Book112 RegisterInformative -0.265155748 -0.2744822689
## 670 Source Book113 RegisterInformative -0.113175570 -0.1516707526
## 671 Source Book114 RegisterInformative -0.261158579 -0.2848356674
## 672 Source Book115 RegisterInformative 0.575407621 0.5580515644
## 673 Source Book116 RegisterInformative 0.714042120 0.7143106380
## 674 Source Book117 RegisterInformative -0.509435677 -0.4582054257
## 675 Source Book118 RegisterInformative 0.139608300 0.1664392822
## 676 Source Book119 RegisterInformative -0.040663750 -0.0951003631
## 677 Source Book12 RegisterInformative -0.343229753 -0.3685145514
## 678 Source Book120 RegisterInformative -0.097031528 -0.0901957307
## 679 Source Book121 RegisterInformative -0.211504562 -0.2261312205
## 680 Source Book122 RegisterInformative 0.383360394 0.3520568061
## 681 Source Book123 RegisterInformative -0.255833864 -0.2322267979
## 682 Source Book124 RegisterInformative -0.081430934 -0.0731089716
## 683 Source Book125 RegisterInformative 0.632531802 0.6348620930
## 684 Source Book126 RegisterInformative -0.193426924 -0.2054111200
## 685 Source Book127 RegisterInformative -0.116857872 -0.1843747877
## 686 Source Book128 RegisterInformative -0.320420178 -0.2968341345
## 687 Source Book129 RegisterInformative -0.399677530 -0.3822531110
## 688 Source Book13 RegisterInformative 0.518841996 0.5447034961
## 689 Source Book130 RegisterInformative -0.009872289 -0.0055987904
## 690 Source Book131 RegisterInformative -0.225733278 -0.2289573609
## 691 Source Book132 RegisterInformative -0.618341435 -0.6407105078
## 692 Source Book133 RegisterInformative -0.239697287 -0.2574979698
## 693 Source Book134 RegisterInformative -0.190662364 -0.1661304409
## 694 Source Book135 RegisterInformative -0.160928220 -0.2025407860
## 695 Source Book136 RegisterInformative -0.328125980 -0.3311501057
## 696 Source Book137 RegisterInformative -0.221498491 -0.2468095270
## 697 Source Book138 RegisterInformative 0.058574643 0.0734517962
## 698 Source Book139 RegisterInformative -0.388515287 -0.3757278215
## 699 Source Book14 RegisterInformative 0.066870580 0.0657952984
## 700 Source Book140 RegisterInformative -0.109157459 -0.1152087823
## 701 Source Book141 RegisterInformative -0.260744174 -0.2890521422
## 702 Source Book142 RegisterInformative 0.005741013 -0.0059743012
## 703 Source Book143 RegisterInformative -0.116937866 -0.1232147249
## 704 Source Book144 RegisterInformative -0.362746682 -0.3666421179
## 705 Source Book145 RegisterInformative -0.794572083 -0.7441374415
## 706 Source Book146 RegisterInformative -0.078974308 -0.0612617831
## 707 Source Book147 RegisterInformative -0.146887411 -0.1713214586
## 708 Source Book148 RegisterInformative 0.203107821 0.2452357734
## 709 Source Book149 RegisterInformative 0.412813402 0.4372351711
## 710 Source Book15 RegisterInformative -0.290383846 -0.2939724096
## 711 Source Book150 RegisterInformative -0.632851281 -0.6332395936
## 712 Source Book151 RegisterInformative -0.140807076 -0.1693605427
## 713 Source Book152 RegisterInformative 0.934379918 0.9555416128
## 714 Source Book153 RegisterInformative -0.679177707 -0.7403471414
## 715 Source Book154 RegisterInformative -0.218239013 -0.2084516703
## 716 Source Book155 RegisterInformative -0.614743738 -0.6612803897
## 717 Source Book156 RegisterInformative -0.414050940 -0.3783062604
## 718 Source Book157 RegisterInformative -0.048696342 -0.0568094397
## 719 Source Book158 RegisterInformative 0.236569384 0.2108913434
## 720 Source Book159 RegisterInformative -0.291187076 -0.2823361851
## 721 Source Book16 RegisterInformative 0.260885557 0.2752053426
## 722 Source Book160 RegisterInformative 0.189370304 0.2044628704
## 723 Source Book161 RegisterInformative 0.678243827 0.6256587235
## 724 Source Book162 RegisterInformative -0.179507421 -0.1676844102
## 725 Source Book163 RegisterInformative -0.290915011 -0.3130487024
## 726 Source Book164 RegisterInformative -0.647780860 -0.6316134433
## 727 Source Book165 RegisterInformative -0.274587701 -0.2776751526
## 728 Source Book166 RegisterInformative 0.145480229 0.1261662804
## 729 Source Book167 RegisterInformative 0.169517883 0.1905500362
## 730 Source Book168 RegisterInformative 0.002659109 -0.0203112721
## 731 Source Book169 RegisterInformative 1.406307873 1.3635385237
## 732 Source Book17 RegisterInformative 1.325108727 1.3383668775
## 733 Source Book170 RegisterInformative -0.716253690 -0.7429277911
## 734 Source Book171 RegisterInformative -0.374689465 -0.3801654387
## 735 Source Book172 RegisterInformative -0.141400742 -0.0966006160
## 736 Source Book173 RegisterInformative -0.357888473 -0.3641499018
## 737 Source Book174 RegisterInformative -0.709424675 -0.7395364354
## 738 Source Book175 RegisterInformative 0.268466820 0.2698283481
## 739 Source Book176 RegisterInformative 0.870111677 0.8650621245
## 740 Source Book177 RegisterInformative -0.591299559 -0.6089362736
## 741 Source Book178 RegisterInformative -0.259828269 -0.2577726282
## 742 Source Book179 RegisterInformative -0.325386611 -0.3010396621
## 743 Source Book18 RegisterInformative 0.144365699 0.1619703910
## 744 Source Book180 RegisterInformative -0.166733862 -0.2164046941
## 745 Source Book181 RegisterInformative 0.722941433 0.7302958436
## 746 Source Book182 RegisterInformative -0.333608008 -0.2872959922
## 747 Source Book183 RegisterInformative -0.153068130 -0.1807491521
## 748 Source Book184 RegisterInformative -0.459524897 -0.4612912520
## 749 Source Book185 RegisterInformative 0.671186236 0.6563068964
## 750 Source Book186 RegisterInformative -0.154408997 -0.1709668749
## 751 Source Book187 RegisterInformative -0.463692543 -0.5151934915
## 752 Source Book188 RegisterInformative -0.718511900 -0.7208281443
## 753 Source Book189 RegisterInformative 0.409554523 0.4576412055
## 754 Source Book19 RegisterInformative -0.914890147 -0.9224334637
## 755 Source Book190 RegisterInformative -0.243088934 -0.2737783253
## 756 Source Book191 RegisterInformative 0.235922762 0.1907899982
## 757 Source Book192 RegisterInformative 0.077845676 0.0764675570
## 758 Source Book193 RegisterInformative 0.077780722 0.0228099922
## 759 Source Book194 RegisterInformative 0.263071033 0.2535911739
## 760 Source Book195 RegisterInformative -0.006829959 0.0074747626
## 761 Source Book196 RegisterInformative 0.702566406 0.7258409679
## 762 Source Book197 RegisterInformative 0.965533677 1.0069761944
## 763 Source Book198 RegisterInformative -1.003656565 -1.0250481333
## 764 Source Book199 RegisterInformative 0.432818435 0.4329550042
## 765 Source Book2 RegisterInformative 0.439435175 0.4365956428
## 766 Source Book20 RegisterInformative 0.202171564 0.1792369859
## 767 Source Book200 RegisterInformative -0.153661533 -0.1755393307
## 768 Source Book201 RegisterInformative -0.870098581 -0.9043708381
## 769 Source Book202 RegisterInformative -0.958945979 -0.9331320018
## 770 Source Book203 RegisterInformative 0.264415760 0.2775828561
## 771 Source Book204 RegisterInformative -0.058114805 -0.0572670122
## 772 Source Book205 RegisterInformative 0.077125639 0.0976605512
## 773 Source Book206 RegisterInformative -0.511524723 -0.4983049578
## 774 Source Book207 RegisterInformative 1.517839175 1.5216355934
## 775 Source Book208 RegisterInformative 0.201484448 0.2527687887
## 776 Source Book209 RegisterInformative 0.159452750 0.1291436249
## 777 Source Book21 RegisterInformative 1.056315667 1.0588916729
## 778 Source Book210 RegisterInformative 0.439418607 0.3863660571
## 779 Source Book211 RegisterInformative -0.122143751 -0.0957292213
## 780 Source Book212 RegisterInformative 0.114476037 0.1152817830
## 781 Source Book213 RegisterInformative -0.103107422 -0.1017547373
## 782 Source Book214 RegisterInformative 0.063043084 0.1028120373
## 783 Source Book215 RegisterInformative 0.738151126 0.7487886709
## 784 Source Book216 RegisterInformative 0.142621846 0.1238427881
## 785 Source Book217 RegisterInformative 0.231484844 0.2584979383
## 786 Source Book218 RegisterInformative -0.222312018 -0.2597453389
## 787 Source Book219 RegisterInformative 0.936575811 0.9365882684
## 788 Source Book22 RegisterInformative -0.598174019 -0.6038148313
## 789 Source Book220 RegisterInformative 0.254423393 0.2198311401
## 790 Source Book221 RegisterInformative -0.356826590 -0.3821515592
## 791 Source Book222 RegisterInformative -0.557490643 -0.5470548809
## 792 Source Book223 RegisterInformative -0.444383924 -0.5071428722
## 793 Source Book224 RegisterInformative 0.995282764 1.0200162391
## 794 Source Book225 RegisterInformative 0.665286152 0.6408043421
## 795 Source Book226 RegisterInformative 1.019671091 1.0303995191
## 796 Source Book227 RegisterInformative 0.010814440 0.0318933533
## 797 Source Book228 RegisterInformative 0.154145280 0.1480212341
## 798 Source Book229 RegisterInformative -0.659974311 -0.6779418064
## 799 Source Book23 RegisterInformative -0.024077347 -0.0514823315
## 800 Source Book230 RegisterInformative -0.429275363 -0.4638169121
## 801 Source Book231 RegisterInformative -0.542938520 -0.5521552167
## 802 Source Book232 RegisterInformative 0.831260897 0.8044687898
## 803 Source Book233 RegisterInformative -0.442141005 -0.3980870769
## 804 Source Book234 RegisterInformative -0.469074717 -0.4684413206
## 805 Source Book235 RegisterInformative -0.093278559 -0.0988632472
## 806 Source Book236 RegisterInformative 0.440910212 0.4079954595
## 807 Source Book237 RegisterInformative 0.661883602 0.6615638328
## 808 Source Book238 RegisterInformative -0.597448440 -0.5588321283
## 809 Source Book239 RegisterInformative 0.856944891 0.8825068356
## 810 Source Book24 RegisterInformative -0.072434149 -0.1152681863
## 811 Source Book240 RegisterInformative -0.194263630 -0.1950376284
## 812 Source Book241 RegisterInformative 0.142066482 0.1539650918
## 813 Source Book242 RegisterInformative -0.733906029 -0.7268965689
## 814 Source Book243 RegisterInformative -0.373693868 -0.4039375272
## 815 Source Book244 RegisterInformative -0.276602209 -0.3055006601
## 816 Source Book245 RegisterInformative -0.809170667 -0.7917135950
## 817 Source Book246 RegisterInformative -0.423901528 -0.4173747720
## 818 Source Book247 RegisterInformative -0.444177145 -0.4223936731
## 819 Source Book248 RegisterInformative -0.676739472 -0.6999394801
## 820 Source Book249 RegisterInformative -0.050318952 -0.0189766730
## 821 Source Book25 RegisterInformative -0.307154739 -0.3057420548
## 822 Source Book250 RegisterInformative -0.663568465 -0.6259385249
## 823 Source Book251 RegisterInformative -0.318572991 -0.3121682376
## 824 Source Book252 RegisterInformative 0.162453542 0.1189478730
## 825 Source Book253 RegisterInformative 0.155535018 0.1982094490
## 826 Source Book254 RegisterInformative -0.270781180 -0.2685143762
## 827 Source Book255 RegisterInformative -0.040440007 -0.0330955441
## 828 Source Book256 RegisterInformative 1.541853463 1.5812774667
## 829 Source Book257 RegisterInformative 0.220777633 0.2266249938
## 830 Source Book258 RegisterInformative -0.556379345 -0.5195626119
## 831 Source Book259 RegisterInformative -0.122769016 -0.1050030816
## 832 Source Book26 RegisterInformative -0.601282465 -0.5536981240
## 833 Source Book260 RegisterInformative 0.008459376 0.0252156419
## 834 Source Book261 RegisterInformative 0.796866223 0.7733344962
## 835 Source Book262 RegisterInformative 0.650411453 0.6297091733
## 836 Source Book263 RegisterInformative 0.456605785 0.4746302707
## 837 Source Book264 RegisterInformative -0.406022595 -0.4312912015
## 838 Source Book265 RegisterInformative -0.431045997 -0.4512863004
## 839 Source Book266 RegisterInformative -0.317993470 -0.2859703553
## 840 Source Book267 RegisterInformative 0.416645741 0.4017647537
## 841 Source Book268 RegisterInformative 0.798050677 0.8160634016
## 842 Source Book269 RegisterInformative -0.133032468 -0.1306114971
## 843 Source Book27 RegisterInformative 0.402468484 0.4190812754
## 844 Source Book270 RegisterInformative 0.913771291 0.9268567628
## 845 Source Book271 RegisterInformative 0.304728327 0.2673979595
## 846 Source Book272 RegisterInformative 0.848701191 0.8186650013
## 847 Source Book273 RegisterInformative -0.707952084 -0.7451244269
## 848 Source Book274 RegisterInformative 0.137635196 0.1189203724
## 849 Source Book275 RegisterInformative -0.171613204 -0.1271376520
## 850 Source Book276 RegisterInformative 0.497071475 0.5187965260
## 851 Source Book277 RegisterInformative -0.834458218 -0.8216301285
## 852 Source Book278 RegisterInformative -0.683516756 -0.6689145167
## 853 Source Book279 RegisterInformative 0.023483195 0.0107279564
## 854 Source Book28 RegisterInformative 0.074417624 0.0186148161
## 855 Source Book280 RegisterInformative 0.776596320 0.7354176466
## 856 Source Book281 RegisterInformative -0.159569700 -0.1638378355
## 857 Source Book282 RegisterInformative 0.643972828 0.6660961719
## 858 Source Book283 RegisterInformative -0.308414018 -0.2824677989
## 859 Source Book284 RegisterInformative 0.395513723 0.4260783869
## 860 Source Book285 RegisterInformative -0.425699155 -0.4757221528
## 861 Source Book286 RegisterInformative 0.395381400 0.4035861999
## 862 Source Book287 RegisterInformative 0.260653995 0.2090441307
## 863 Source Book288 RegisterInformative -0.095601953 -0.0681589894
## 864 Source Book289 RegisterInformative 0.062961960 0.0240319319
## 865 Source Book29 RegisterInformative -0.455866168 -0.4110850906
## 866 Source Book290 RegisterInformative -0.666485915 -0.6440710273
## 867 Source Book291 RegisterInformative 0.092470784 0.1028755657
## 868 Source Book292 RegisterInformative -0.114738001 -0.0895046267
## 869 Source Book293 RegisterInformative 0.103149302 0.0936903490
## 870 Source Book294 RegisterInformative 0.983336320 1.0023055255
## 871 Source Book295 RegisterInformative 0.375885749 0.3488577815
## 872 Source Book296 RegisterInformative 0.084872625 0.0450875722
## 873 Source Book297 RegisterInformative 0.122076684 0.1442560217
## 874 Source Book298 RegisterInformative 0.229610336 0.2226399818
## 875 Source Book299 RegisterInformative -0.444700446 -0.4646997483
## 876 Source Book3 RegisterInformative -0.235684666 -0.2915215308
## 877 Source Book30 RegisterInformative -0.525368604 -0.5311009975
## 878 Source Book300 RegisterInformative -0.235797009 -0.2438946773
## 879 Source Book31 RegisterInformative -0.335921650 -0.3205657370
## 880 Source Book32 RegisterInformative -0.457357830 -0.4302553186
## 881 Source Book33 RegisterInformative -0.075495250 -0.1124300834
## 882 Source Book34 RegisterInformative 0.610289566 0.6055526928
## 883 Source Book35 RegisterInformative -0.102618615 -0.0855522531
## 884 Source Book36 RegisterInformative -0.639882863 -0.6404644140
## 885 Source Book37 RegisterInformative -0.344869624 -0.3633105619
## 886 Source Book38 RegisterInformative 0.065935930 0.0735982321
## 887 Source Book39 RegisterInformative 0.060857347 0.0711453413
## 888 Source Book4 RegisterInformative 0.647436862 0.6805592732
## 889 Source Book40 RegisterInformative 0.498599114 0.4730036644
## 890 Source Book41 RegisterInformative -0.148185719 -0.1496423499
## 891 Source Book42 RegisterInformative -0.268528724 -0.2504372835
## 892 Source Book43 RegisterInformative -0.537994046 -0.5582865487
## 893 Source Book44 RegisterInformative 1.129952561 1.1653770520
## 894 Source Book45 RegisterInformative 0.152381595 0.1829385559
## 895 Source Book46 RegisterInformative 0.039984701 0.0487392394
## 896 Source Book47 RegisterInformative -1.336715081 -1.2927409055
## 897 Source Book48 RegisterInformative 0.359607011 0.3244003532
## 898 Source Book49 RegisterInformative -0.474671802 -0.4687207594
## 899 Source Book5 RegisterInformative -0.432641083 -0.4011359358
## 900 Source Book50 RegisterInformative 0.377112508 0.3525333395
## 901 Source Book51 RegisterInformative 0.026869259 -0.0241236839
## 902 Source Book52 RegisterInformative -0.020202886 -0.0309137186
## 903 Source Book53 RegisterInformative -0.466730838 -0.4810444294
## 904 Source Book54 RegisterInformative -0.390184511 -0.4175498375
## 905 Source Book55 RegisterInformative -0.225744298 -0.2381892307
## 906 Source Book56 RegisterInformative 0.310505962 0.3290265985
## 907 Source Book57 RegisterInformative -0.338954920 -0.3486230741
## 908 Source Book58 RegisterInformative 0.194896696 0.1905584407
## 909 Source Book59 RegisterInformative -0.517367970 -0.5599832759
## 910 Source Book6 RegisterInformative -0.406705064 -0.3743799718
## 911 Source Book60 RegisterInformative -0.003054707 -0.0708939476
## 912 Source Book61 RegisterInformative 0.676624088 0.7135487554
## 913 Source Book62 RegisterInformative -0.502534973 -0.5197230234
## 914 Source Book63 RegisterInformative 0.145697493 0.1584908469
## 915 Source Book64 RegisterInformative -0.112637122 -0.0980905489
## 916 Source Book65 RegisterInformative -0.095339585 -0.1024669679
## 917 Source Book66 RegisterInformative 0.255465174 0.2358822232
## 918 Source Book67 RegisterInformative -0.447793735 -0.4027515076
## 919 Source Book68 RegisterInformative 0.541243759 0.5583677610
## 920 Source Book69 RegisterInformative -0.203073302 -0.2050965458
## 921 Source Book7 RegisterInformative 0.998471252 1.0064439584
## 922 Source Book70 RegisterInformative -0.301073405 -0.2937275093
## 923 Source Book71 RegisterInformative 0.504683821 0.4851385611
## 924 Source Book72 RegisterInformative 0.637996382 0.6358575755
## 925 Source Book73 RegisterInformative 0.296264022 0.3199763364
## 926 Source Book74 RegisterInformative -0.408859356 -0.3849829214
## 927 Source Book75 RegisterInformative 0.114844408 0.0871646881
## 928 Source Book76 RegisterInformative -0.259123410 -0.2629234407
## 929 Source Book77 RegisterInformative -0.991074780 -0.9692307719
## 930 Source Book78 RegisterInformative 0.341127234 0.3129318386
## 931 Source Book79 RegisterInformative -0.161632505 -0.1655250039
## 932 Source Book8 RegisterInformative -0.654911110 -0.6565125522
## 933 Source Book80 RegisterInformative 0.429510552 0.4234922429
## 934 Source Book81 RegisterInformative 0.186315473 0.1601455534
## 935 Source Book82 RegisterInformative -0.064044395 -0.0483395630
## 936 Source Book83 RegisterInformative -0.803634448 -0.8391838804
## 937 Source Book84 RegisterInformative -0.010944635 -0.0028401012
## 938 Source Book85 RegisterInformative 1.567658986 1.5441937065
## 939 Source Book86 RegisterInformative 0.538282064 0.5709297506
## 940 Source Book87 RegisterInformative -0.206840464 -0.1948625810
## 941 Source Book88 RegisterInformative -0.905505402 -0.8758085454
## 942 Source Book89 RegisterInformative 0.937973618 0.9648949075
## 943 Source Book9 RegisterInformative 0.262468957 0.2578274674
## 944 Source Book90 RegisterInformative 0.295783285 0.2740032766
## 945 Source Book91 RegisterInformative 0.006797191 -0.0005768066
## 946 Source Book92 RegisterInformative 1.434561639 1.4608151768
## 947 Source Book93 RegisterInformative 0.085658471 0.1089753314
## 948 Source Book94 RegisterInformative -0.642070521 -0.6140759832
## 949 Source Book95 RegisterInformative -0.958654281 -0.9939692681
## 950 Source Book96 RegisterInformative -0.333085688 -0.3529085755
## 951 Source Book97 RegisterInformative 0.640106639 0.6577056537
## 952 Source Book98 RegisterInformative -0.033778313 -0.0102373864
## 953 Source Book99 RegisterInformative -0.678022019 -0.6863984774
## 954 Source Dogo RegisterInformative 0.365083457 0.3904939352
## 955 Source Ducksters RegisterInformative -0.080606468 -0.0999720175
## 956 Source EIM RegisterInformative 0.614294912 0.5967644655
## 957 Source Encyclopedia RegisterInformative -1.101779369 -1.0668825054
## 958 Source Factmonster RegisterInformative 0.526057731 0.5633473112
## 959 Source GreenLine RegisterInformative 0.010093833 -0.0002796852
## 960 Source History RegisterInformative 0.735246245 0.7173316998
## 961 Source HT RegisterInformative -0.845386394 -0.8523977017
## 962 Source JTT RegisterInformative -0.340767522 -0.3471577264
## 963 Source NGL RegisterInformative 0.013177242 0.0085514574
## 964 Source POC RegisterInformative -0.598773532 -0.5796577028
## 965 Source Quatr RegisterInformative -0.058967670 -0.0518246899
## 966 Source Revision RegisterInformative -1.195322335 -1.1715577014
## 967 Source Science RegisterInformative -0.870202282 -0.8505099830
## 968 Source Science_Tech RegisterInformative -2.181147463 -2.1703089670
## 969 Source Solutions RegisterInformative 0.959757589 0.9895234679
## 970 Source Spoken.BNC2014 RegisterInformative 0.003472077 0.0281132189
## 971 Source Teen RegisterInformative 0.691206076 0.6528825304
## 972 Source TeenVogue RegisterInformative 1.398969633 1.3797493190
## 973 Source TweenTribute RegisterInformative 0.495339314 0.4605920368
## 974 Source WhyFiles RegisterInformative 0.597273444 0.5796412744
## 975 Source World RegisterInformative 0.114004954 0.1117743599
## sd
## 1 0.4156689
## 2 0.4164900
## 3 0.7837332
## 4 0.5898412
## 5 0.6121647
## 6 0.6210976
## 7 0.6044885
## 8 0.6022772
## 9 0.6536755
## 10 0.6085665
## 11 0.5973797
## 12 0.5862229
## 13 0.6087894
## 14 0.6052474
## 15 0.6177118
## 16 0.6251623
## 17 0.6280383
## 18 0.6176521
## 19 0.5852518
## 20 0.6078680
## 21 0.6158856
## 22 0.5859336
## 23 0.6059424
## 24 0.6072051
## 25 0.5897256
## 26 0.6021569
## 27 0.5870200
## 28 0.6074405
## 29 0.5841827
## 30 0.5749767
## 31 0.6054578
## 32 0.6051124
## 33 0.6103368
## 34 0.6002744
## 35 0.5874648
## 36 0.6067991
## 37 0.6242778
## 38 0.6091164
## 39 0.6159451
## 40 0.6149036
## 41 0.6254855
## 42 0.6245145
## 43 0.6192327
## 44 0.6446843
## 45 0.6075575
## 46 0.6506994
## 47 0.5883010
## 48 0.5780632
## 49 0.5978266
## 50 0.5776977
## 51 0.6383411
## 52 0.6355670
## 53 0.6177396
## 54 0.6131735
## 55 0.6084805
## 56 0.6035225
## 57 0.6608026
## 58 0.5925966
## 59 0.6150743
## 60 0.6152919
## 61 0.6227800
## 62 0.5998879
## 63 0.6167710
## 64 0.6259023
## 65 0.5967784
## 66 0.6001819
## 67 0.6220704
## 68 0.6237236
## 69 0.6143713
## 70 0.6081314
## 71 0.6425977
## 72 0.5958361
## 73 0.6297058
## 74 0.5974681
## 75 0.5809569
## 76 0.6312158
## 77 0.6111908
## 78 0.6031850
## 79 0.5948895
## 80 0.5998238
## 81 0.6320864
## 82 0.6007932
## 83 0.6173494
## 84 0.6257684
## 85 0.6247825
## 86 0.6493711
## 87 0.6217821
## 88 0.6245620
## 89 0.6452085
## 90 0.6186232
## 91 0.6216795
## 92 0.6198474
## 93 0.6195648
## 94 0.5861627
## 95 0.6350653
## 96 0.6231642
## 97 0.6418257
## 98 0.6148621
## 99 0.5786707
## 100 0.6102391
## 101 0.5871695
## 102 0.6187379
## 103 0.6534412
## 104 0.5869815
## 105 0.6230022
## 106 0.6093540
## 107 0.6063714
## 108 0.6336612
## 109 0.6329782
## 110 0.6454847
## 111 0.5925318
## 112 0.6097324
## 113 0.6092760
## 114 0.6105331
## 115 0.6147488
## 116 0.6073395
## 117 0.6410001
## 118 0.6489845
## 119 0.6128873
## 120 0.6052396
## 121 0.5917779
## 122 0.5968382
## 123 0.6285480
## 124 0.5886858
## 125 0.5963836
## 126 0.6236853
## 127 0.5991882
## 128 0.6467741
## 129 0.6059706
## 130 0.6491541
## 131 0.5908131
## 132 0.6503689
## 133 0.6088586
## 134 0.5889224
## 135 0.5761927
## 136 0.6144336
## 137 0.5700481
## 138 0.6145991
## 139 0.6043543
## 140 0.6317096
## 141 0.6014331
## 142 0.6103563
## 143 0.5821189
## 144 0.6468632
## 145 0.5892720
## 146 0.6370014
## 147 0.6092379
## 148 0.6135439
## 149 0.6157283
## 150 0.5811384
## 151 0.5967180
## 152 0.5965642
## 153 0.6023049
## 154 0.6099106
## 155 0.5944554
## 156 0.6433193
## 157 0.6017623
## 158 0.6329943
## 159 0.9231876
## 160 0.6371930
## 161 0.6203510
## 162 0.6017971
## 163 0.6301267
## 164 0.5865654
## 165 0.5873305
## 166 0.6032995
## 167 0.6023604
## 168 0.6175215
## 169 0.5962283
## 170 0.6093274
## 171 0.6439414
## 172 0.5893340
## 173 0.6113345
## 174 0.6127363
## 175 0.6144788
## 176 0.6284187
## 177 0.5743171
## 178 0.6167331
## 179 0.5805917
## 180 0.5968097
## 181 0.6047864
## 182 0.6342181
## 183 0.6197005
## 184 0.6163521
## 185 0.8625822
## 186 0.6046674
## 187 0.6052728
## 188 0.6227239
## 189 0.6181100
## 190 0.8452321
## 191 0.6289239
## 192 0.5910481
## 193 0.6241053
## 194 0.5908627
## 195 0.5958104
## 196 0.6139803
## 197 0.5804633
## 198 0.6328089
## 199 0.5993569
## 200 0.5997889
## 201 0.6038281
## 202 0.5930557
## 203 0.6273117
## 204 0.6013403
## 205 0.6277095
## 206 0.6116288
## 207 0.6140783
## 208 0.5907531
## 209 0.6301404
## 210 0.6366838
## 211 0.6139008
## 212 0.5746126
## 213 0.6275090
## 214 0.5790813
## 215 0.6090921
## 216 0.6358138
## 217 0.5759348
## 218 0.6193513
## 219 0.6110659
## 220 0.6155646
## 221 0.5995228
## 222 0.5930846
## 223 0.5953816
## 224 0.6056030
## 225 0.5854380
## 226 0.6027361
## 227 0.6167203
## 228 0.6090799
## 229 0.6311073
## 230 0.6055901
## 231 0.6124703
## 232 0.6187979
## 233 0.6006241
## 234 0.6135382
## 235 0.6406307
## 236 0.6063846
## 237 0.5841936
## 238 0.6172877
## 239 0.6092626
## 240 0.6169064
## 241 0.6111655
## 242 0.5733252
## 243 0.6197244
## 244 0.6055584
## 245 0.6362271
## 246 0.6195689
## 247 0.6039526
## 248 0.6144370
## 249 0.5822393
## 250 0.6027487
## 251 0.5997788
## 252 0.6516774
## 253 0.6213999
## 254 0.6028889
## 255 0.6025611
## 256 0.6262514
## 257 0.6202498
## 258 0.6288957
## 259 0.6442672
## 260 0.6146556
## 261 0.6077450
## 262 0.6351011
## 263 0.6385184
## 264 0.5941687
## 265 0.5795853
## 266 0.6163476
## 267 0.6334750
## 268 0.6038924
## 269 0.6256806
## 270 0.6193162
## 271 0.6120501
## 272 0.5964862
## 273 0.5860906
## 274 0.5968261
## 275 0.5886662
## 276 0.6076221
## 277 0.6154609
## 278 0.5703540
## 279 0.6202103
## 280 0.6029453
## 281 0.6108265
## 282 0.6006887
## 283 0.6045749
## 284 0.6401561
## 285 0.6118915
## 286 0.5944019
## 287 0.6067542
## 288 0.6355580
## 289 0.6129178
## 290 0.6072284
## 291 0.5937540
## 292 0.5914546
## 293 0.5837916
## 294 0.6314292
## 295 0.6047005
## 296 0.6303064
## 297 0.6210911
## 298 0.5770784
## 299 0.5987870
## 300 0.6250179
## 301 0.5908241
## 302 0.6088438
## 303 0.5944566
## 304 0.8170083
## 305 0.7890567
## 306 0.5123380
## 307 0.8007828
## 308 0.8088418
## 309 0.4196986
## 310 0.8075859
## 311 0.4484977
## 312 0.4319364
## 313 0.4218969
## 314 0.6523811
## 315 0.8433477
## 316 0.7697181
## 317 0.7837213
## 318 0.7748318
## 319 0.5511056
## 320 1.0763088
## 321 0.8037587
## 322 0.7654706
## 323 0.8248317
## 324 0.7873524
## 325 0.7736780
## 326 0.6725325
## 327 0.7206089
## 328 1.1622588
## 329 1.0196066
## 330 1.0576260
## 331 1.0801773
## 332 1.0474261
## 333 1.1019777
## 334 1.0592771
## 335 1.0826461
## 336 1.1289990
## 337 1.0907851
## 338 1.0889242
## 339 1.1232974
## 340 1.0984392
## 341 1.0488933
## 342 1.1218000
## 343 1.0893996
## 344 1.0530222
## 345 1.0971568
## 346 1.0573368
## 347 1.0546267
## 348 1.1170840
## 349 1.0578803
## 350 1.0962772
## 351 1.0697000
## 352 0.9980265
## 353 1.0876392
## 354 1.0774233
## 355 1.0552049
## 356 1.0569342
## 357 1.0928147
## 358 1.0835351
## 359 1.0736905
## 360 1.0219953
## 361 1.0457845
## 362 1.0379435
## 363 1.0381199
## 364 1.0583913
## 365 1.0848521
## 366 1.0726768
## 367 1.0634018
## 368 1.0336098
## 369 1.1200776
## 370 1.0694120
## 371 1.1456401
## 372 1.0416730
## 373 1.0285948
## 374 1.0531293
## 375 1.0687247
## 376 1.0726829
## 377 1.0471075
## 378 1.0598320
## 379 1.0740231
## 380 1.1387166
## 381 1.0495859
## 382 1.1099285
## 383 1.0711130
## 384 1.1150589
## 385 1.0841913
## 386 1.0728312
## 387 1.0559878
## 388 1.1296417
## 389 1.0885897
## 390 1.1327975
## 391 1.1145510
## 392 1.1134325
## 393 1.0772341
## 394 1.0452383
## 395 1.0917478
## 396 1.1611484
## 397 1.0273247
## 398 1.0837611
## 399 1.0882876
## 400 1.0317132
## 401 1.0948291
## 402 1.0483982
## 403 1.0008973
## 404 1.0720294
## 405 1.1361216
## 406 1.0983355
## 407 1.1002336
## 408 1.0689328
## 409 1.1179261
## 410 1.1263933
## 411 1.1207903
## 412 1.0606797
## 413 1.1101005
## 414 1.0643913
## 415 1.0702589
## 416 1.1073153
## 417 0.9949185
## 418 1.1266085
## 419 1.0539243
## 420 1.0382547
## 421 1.1172343
## 422 1.0620984
## 423 1.0510363
## 424 1.0210428
## 425 1.0756427
## 426 1.0157063
## 427 1.0314591
## 428 1.1486082
## 429 1.0571314
## 430 1.0868698
## 431 1.0368458
## 432 1.0353532
## 433 1.0586805
## 434 1.0837073
## 435 1.0969712
## 436 1.0307247
## 437 1.0986824
## 438 1.0826950
## 439 1.0056225
## 440 1.0484664
## 441 1.1007262
## 442 1.0594657
## 443 1.0798097
## 444 1.0279777
## 445 1.0667750
## 446 1.0671810
## 447 1.0532581
## 448 1.0911735
## 449 1.0799033
## 450 1.0183312
## 451 1.0537235
## 452 1.0817082
## 453 1.0906587
## 454 1.0553100
## 455 1.0636389
## 456 1.1102229
## 457 1.0710505
## 458 1.0302130
## 459 1.0448997
## 460 1.0448970
## 461 1.0566510
## 462 0.9994065
## 463 1.0558293
## 464 1.1106803
## 465 1.0330213
## 466 1.0798934
## 467 1.0634287
## 468 0.9937375
## 469 1.1503421
## 470 1.0239251
## 471 1.0635863
## 472 1.0565377
## 473 1.0480155
## 474 1.0751627
## 475 1.0248769
## 476 1.0813922
## 477 1.0872790
## 478 1.0219827
## 479 1.0717732
## 480 1.0100869
## 481 1.1369750
## 482 1.0647762
## 483 1.1383143
## 484 1.3745766
## 485 1.0961328
## 486 1.0863654
## 487 1.0715850
## 488 1.0974104
## 489 1.0408408
## 490 1.0982768
## 491 1.0463946
## 492 1.0720581
## 493 1.0844405
## 494 1.0047470
## 495 1.1142711
## 496 1.0494631
## 497 1.0616916
## 498 1.0906715
## 499 1.0460702
## 500 1.0813353
## 501 1.0665167
## 502 1.0590487
## 503 1.0838797
## 504 1.0623970
## 505 1.0576611
## 506 1.0851974
## 507 1.0926495
## 508 1.0374702
## 509 1.0671475
## 510 1.3255767
## 511 1.0656175
## 512 1.1004391
## 513 1.0579151
## 514 1.0498661
## 515 1.2401219
## 516 1.0695229
## 517 1.0244992
## 518 1.1352837
## 519 1.0992026
## 520 1.1212860
## 521 1.1068342
## 522 1.0376145
## 523 1.0599693
## 524 1.0629462
## 525 1.0883125
## 526 1.0126311
## 527 1.0003281
## 528 1.0899433
## 529 1.0835547
## 530 1.0607805
## 531 1.1539416
## 532 1.0897567
## 533 1.0937154
## 534 1.0786013
## 535 1.0774882
## 536 1.1153190
## 537 1.0254438
## 538 1.1108674
## 539 1.0586576
## 540 1.0606882
## 541 1.1227741
## 542 1.0109812
## 543 1.0708797
## 544 1.0812381
## 545 1.0596027
## 546 1.0395079
## 547 1.0615823
## 548 1.0305689
## 549 1.0473744
## 550 1.0592968
## 551 1.0933914
## 552 1.1270481
## 553 1.1059511
## 554 1.0204301
## 555 1.0865907
## 556 1.0910774
## 557 1.0113172
## 558 1.0156362
## 559 1.0670746
## 560 1.1194213
## 561 1.0719453
## 562 1.0526140
## 563 1.0646119
## 564 1.0808106
## 565 1.0753249
## 566 1.0432891
## 567 1.0842998
## 568 1.1097800
## 569 1.0450696
## 570 1.1195586
## 571 1.0820945
## 572 1.0521353
## 573 1.0901588
## 574 1.0406244
## 575 1.0796182
## 576 1.0846914
## 577 1.1091052
## 578 1.0062400
## 579 1.0762406
## 580 1.0728329
## 581 1.0882935
## 582 1.0401896
## 583 1.0878405
## 584 1.0703552
## 585 1.0744398
## 586 1.0371693
## 587 1.1051450
## 588 1.0860457
## 589 1.1092362
## 590 1.0770075
## 591 1.0528506
## 592 1.1479583
## 593 1.1111731
## 594 1.0641791
## 595 1.1336062
## 596 1.1063693
## 597 1.0533902
## 598 1.0301527
## 599 1.1316820
## 600 1.0704431
## 601 1.0667108
## 602 1.0940635
## 603 1.0617583
## 604 1.0468972
## 605 1.0301568
## 606 1.0820181
## 607 1.0464271
## 608 1.0991652
## 609 1.1111474
## 610 1.1238483
## 611 1.0848086
## 612 1.0498864
## 613 1.0627906
## 614 1.1495494
## 615 1.0803959
## 616 1.1029074
## 617 1.0680815
## 618 1.0311070
## 619 1.0922289
## 620 1.0144627
## 621 1.0925729
## 622 1.1282955
## 623 1.0011826
## 624 1.0207198
## 625 1.0736684
## 626 1.0144900
## 627 1.0574659
## 628 1.0947958
## 629 1.1537429
## 630 1.1085425
## 631 0.7418385
## 632 1.1318902
## 633 1.0846068
## 634 0.7505756
## 635 1.0560540
## 636 0.7139307
## 637 0.7051467
## 638 0.6773258
## 639 0.9203595
## 640 1.1281905
## 641 1.0975842
## 642 1.1347436
## 643 1.0740695
## 644 0.7489783
## 645 1.4844937
## 646 1.1184737
## 647 1.0597482
## 648 1.1252655
## 649 1.1147219
## 650 1.1274399
## 651 0.4283157
## 652 0.3915272
## 653 0.5588784
## 654 0.7200516
## 655 0.7551518
## 656 0.7052890
## 657 0.6855785
## 658 0.7001970
## 659 0.7263001
## 660 0.7407848
## 661 0.7527776
## 662 0.7676135
## 663 0.7851809
## 664 0.7368320
## 665 0.7548075
## 666 0.7590378
## 667 0.7148398
## 668 0.7283613
## 669 0.7864078
## 670 0.7673906
## 671 0.7222830
## 672 0.7743647
## 673 0.7252847
## 674 0.7728669
## 675 0.7539985
## 676 0.7401885
## 677 0.7304461
## 678 0.7332767
## 679 0.7536081
## 680 0.7522116
## 681 0.7469639
## 682 0.7010930
## 683 0.7453302
## 684 0.7382419
## 685 0.7579890
## 686 0.6957731
## 687 0.7256736
## 688 0.7459693
## 689 0.7069789
## 690 0.7338955
## 691 0.7034957
## 692 0.7332019
## 693 0.7447322
## 694 0.7707842
## 695 0.7438279
## 696 0.8031153
## 697 0.7477535
## 698 0.7031233
## 699 0.7382514
## 700 0.7649130
## 701 0.7194503
## 702 0.7401601
## 703 0.7229851
## 704 0.7832351
## 705 0.7256845
## 706 0.7299575
## 707 0.7286533
## 708 0.7402337
## 709 0.7744357
## 710 0.7373843
## 711 0.7754419
## 712 0.7383727
## 713 0.7483252
## 714 0.7299988
## 715 0.7214773
## 716 0.7302625
## 717 0.7767335
## 718 0.7636550
## 719 0.7395239
## 720 0.7324986
## 721 0.7814246
## 722 0.7131367
## 723 0.7405845
## 724 0.7716846
## 725 0.7314369
## 726 0.7633097
## 727 0.7663116
## 728 0.7061864
## 729 0.7288348
## 730 0.7635656
## 731 0.7508636
## 732 0.8003157
## 733 0.6912268
## 734 0.7552874
## 735 0.7801618
## 736 0.7032138
## 737 0.7417324
## 738 0.7521494
## 739 0.7627904
## 740 0.7608060
## 741 0.7283254
## 742 0.7040380
## 743 0.7852458
## 744 0.7252050
## 745 0.7233660
## 746 0.7642843
## 747 0.7092617
## 748 0.7404947
## 749 0.7242168
## 750 0.7509175
## 751 0.7232377
## 752 0.7171938
## 753 0.7339928
## 754 0.7560017
## 755 0.7625589
## 756 0.7046678
## 757 0.7166976
## 758 0.6775339
## 759 0.7606577
## 760 0.7198687
## 761 0.7422171
## 762 0.7342001
## 763 0.6816254
## 764 0.7380909
## 765 0.7159844
## 766 0.7372510
## 767 0.7471325
## 768 0.7453982
## 769 0.7137533
## 770 0.7386424
## 771 0.7391711
## 772 0.7115376
## 773 0.7286510
## 774 0.7325219
## 775 0.7456991
## 776 0.7154346
## 777 0.7430996
## 778 0.7465847
## 779 0.7412245
## 780 0.7276010
## 781 0.7563428
## 782 0.7486346
## 783 0.7079338
## 784 0.7790349
## 785 0.7378496
## 786 0.7526025
## 787 0.7063730
## 788 0.7223443
## 789 0.7402876
## 790 0.7287865
## 791 0.7549479
## 792 0.7717874
## 793 0.7525019
## 794 0.7570750
## 795 0.7646610
## 796 0.7227695
## 797 0.7331847
## 798 0.7111210
## 799 0.7195320
## 800 0.7260303
## 801 0.7498212
## 802 0.7181282
## 803 0.7460001
## 804 0.7568831
## 805 0.7040144
## 806 0.7400329
## 807 0.7490139
## 808 0.7497499
## 809 0.7297840
## 810 0.7804970
## 811 0.7061162
## 812 0.7492727
## 813 0.7578967
## 814 0.7570769
## 815 0.7477121
## 816 0.7746079
## 817 0.7582579
## 818 0.7418013
## 819 0.7210385
## 820 0.7275879
## 821 0.7296830
## 822 0.7505676
## 823 0.7047353
## 824 0.7151293
## 825 0.7714896
## 826 0.7129467
## 827 0.7414991
## 828 0.7249714
## 829 0.7883587
## 830 0.7242997
## 831 0.7520808
## 832 0.7186139
## 833 0.7483110
## 834 0.7205428
## 835 0.7407106
## 836 0.7598665
## 837 0.7855574
## 838 0.7121192
## 839 0.7440774
## 840 0.7557104
## 841 0.7367868
## 842 0.7674043
## 843 0.7769044
## 844 0.7652271
## 845 0.7053182
## 846 0.7182617
## 847 0.7311512
## 848 0.7226690
## 849 0.7072845
## 850 0.7168487
## 851 0.7387421
## 852 0.7636658
## 853 0.7698211
## 854 0.7262551
## 855 0.7345581
## 856 0.7772502
## 857 0.7771878
## 858 0.7607255
## 859 0.7653086
## 860 0.7439234
## 861 0.7678074
## 862 0.7220626
## 863 0.7216483
## 864 0.7141620
## 865 0.7544002
## 866 0.7277274
## 867 0.7397052
## 868 0.7539319
## 869 0.7398581
## 870 0.7386427
## 871 0.7705670
## 872 0.7522593
## 873 0.7414441
## 874 0.6948297
## 875 0.7356047
## 876 0.7935104
## 877 0.7554346
## 878 0.7419777
## 879 0.6893367
## 880 0.7654247
## 881 0.7529001
## 882 0.6909348
## 883 0.7352001
## 884 0.7134873
## 885 0.7313394
## 886 0.7178730
## 887 0.7258425
## 888 0.7496946
## 889 0.7376079
## 890 0.7389575
## 891 0.6979122
## 892 0.7618618
## 893 0.7445492
## 894 0.7744710
## 895 0.7580115
## 896 0.7024774
## 897 0.7075978
## 898 0.7630501
## 899 0.7419265
## 900 0.7816151
## 901 0.7668001
## 902 0.7644076
## 903 0.7030022
## 904 0.7231372
## 905 0.7501219
## 906 0.7400955
## 907 0.7196520
## 908 0.7526148
## 909 0.7479391
## 910 0.7643542
## 911 0.7040428
## 912 0.7568539
## 913 0.7525163
## 914 0.8003050
## 915 0.7641240
## 916 0.7666921
## 917 0.7651778
## 918 0.7699912
## 919 0.7394165
## 920 0.7495449
## 921 0.7161281
## 922 0.7723713
## 923 0.7467721
## 924 0.7116218
## 925 0.7368474
## 926 0.7132191
## 927 0.6940617
## 928 0.7330442
## 929 0.7208235
## 930 0.7458842
## 931 0.7577433
## 932 0.7455403
## 933 0.7418804
## 934 0.7968792
## 935 0.7362157
## 936 0.7510551
## 937 0.7303143
## 938 0.7303777
## 939 0.7503829
## 940 0.7488281
## 941 0.7550064
## 942 0.7683137
## 943 0.7284277
## 944 0.7549093
## 945 0.7102605
## 946 0.7317904
## 947 0.7669386
## 948 0.7342083
## 949 0.7535312
## 950 0.7193403
## 951 0.7602047
## 952 0.7421264
## 953 0.7424823
## 954 0.5777185
## 955 0.6184890
## 956 0.4138185
## 957 0.5901989
## 958 0.6141872
## 959 0.4248093
## 960 0.5660774
## 961 0.4308375
## 962 0.4378406
## 963 0.4135766
## 964 0.5390797
## 965 0.5905478
## 966 0.5478158
## 967 0.5680658
## 968 0.5754429
## 969 0.4097403
## 970 0.7499033
## 971 0.5869273
## 972 0.5644726
## 973 0.6005391
## 974 0.5542444
## 975 0.5507464
# We can access the estimated deviation between each series average Dim2 and the overall average:
ranef(md_final2)
## $Source
## (Intercept) RegisterFiction
## Access -0.876509732933187680 1.397585348817344642
## Achievers 0.216403111752454302 0.715024368667208643
## BBC 0.190537604674936550 -1.012265602908283935
## Book1 -0.001830655015635874 0.018684984308233749
## Book10 0.104402024781476019 -1.065602299793086516
## Book100 -0.034003539723212045 0.347064630269411090
## Book101 0.136663992667235695 -1.394891192866511753
## Book102 0.074226582891395443 -0.757609994637645667
## Book103 -0.103678462819929734 1.058217104995573976
## Book104 0.151590374078454382 -1.547240597896494041
## Book105 0.146261220396889241 -1.492847415092686481
## Book106 0.162207109291765489 -1.655602648185061643
## Book107 -0.057093899508418582 0.582741481764068370
## Book108 -0.155099252893723200 1.583054743676449050
## Book109 -0.047320485048579400 0.482986970804781479
## Book11 0.093886250503439656 -0.958270729565067203
## Book110 0.134636855457011873 -1.374200769690026469
## Book111 0.400510549811615824 -4.087899289922361845
## Book112 -0.073847475885493119 0.753740555340824514
## Book113 -0.038210245359663310 0.390001299458895667
## Book114 -0.075549954401892050 0.771117277930451483
## Book115 0.163670053040159413 -1.670534506317310708
## Book116 0.213928802545201496 -2.183511521556196211
## Book117 -0.155075497379540850 1.582812277779849230
## Book118 0.032882090083265474 -0.335618307097700908
## Book119 -0.008112008890675516 0.082797008467402733
## Book12 -0.085345144749731483 0.871094049294954265
## Book120 -0.034037193368303915 0.347408123622927001
## Book121 -0.072340980361098206 0.738364176398143557
## Book122 0.108990798271025605 -1.112438628819545805
## Book123 -0.061926167018336475 0.632063086230671978
## Book124 -0.026967948272884887 0.275254313893209979
## Book125 0.179126974268116190 -1.828298983038014303
## Book126 -0.056979081189870585 0.581569563263837686
## Book127 -0.034013437854121191 0.347165657726327348
## Book128 -0.091703704045863491 0.935994087618071680
## Book129 -0.115106844767802724 1.174863406751288641
## Book13 0.151764581182458003 -1.549018681138223608
## Book130 -0.000927945476708217 0.009471280237454961
## Book131 -0.077264310675381837 0.788615233468378030
## Book132 -0.164492579126645250 1.678929800290144936
## Book133 -0.066404081441702248 0.677767907739666109
## Book134 -0.047839147108226288 0.488280809547203098
## Book135 -0.036634462918903217 0.373917728317799347
## Book136 -0.082892387910407817 0.846059445471061711
## Book137 -0.073999907101495968 0.755296378177338079
## Book138 0.028645690054086726 -0.292378555537466722
## Book139 -0.105796662834518898 1.079836980775691124
## Book14 0.020871698037925591 -0.213031590875299770
## Book140 -0.034664734867953115 0.353813264391428850
## Book141 -0.076209169920450834 0.777845706561085981
## Book142 -0.004291330359686954 0.043800410097659573
## Book143 -0.028205214636546686 0.287882746007764090
## Book144 -0.113952722703779208 1.163083605274832122
## Book145 -0.223400315420230200 2.280184607382610196
## Book146 -0.028185418374728013 0.287680691093931573
## Book147 -0.049630708802808871 0.506566779249077115
## Book148 0.050374067026173842 -0.514154028960422393
## Book149 0.129759056544910628 -1.324414438921607484
## Book15 -0.093853578079362274 0.957937251260321365
## Book150 -0.172027036374801462 1.755831900494934095
## Book151 -0.032376287001724069 0.330455716352349604
## Book152 0.268083456376142448 -2.736252943837389928
## Book153 -0.204861116227118667 2.090960180578128824
## Book154 -0.059778272611019388 0.610140128079805444
## Book155 -0.187198891432570569 1.910686786456445185
## Book156 -0.120637920319917324 1.231317549676192336
## Book157 -0.014205298278438024 0.144989510945159994
## Book158 0.064415555534101152 -0.657471579342076340
## Book159 -0.101245502242424582 1.033384556085514383
## Book16 0.069073615940016111 -0.705015100566950270
## Book160 0.058726109887437664 -0.599400997106509847
## Book161 0.199948682448911619 -2.040820341407424632
## Book162 -0.041096540332813881 0.419460905895727487
## Book163 -0.071978708769817892 0.734666571475002694
## Book164 -0.177853076228013163 1.815296661635947828
## Book165 -0.076143842256449448 0.777178925345437310
## Book166 0.043684910157671369 -0.445879673576296709
## Book167 0.052292324796395492 -0.533733150110827337
## Book168 -0.006981642340834008 0.071259672887546560
## Book169 0.405332919190624863 -4.137119866932049028
## Book17 0.393859005840568710 -4.020008838874518098
## Book170 -0.215733223217889986 2.201928739255140322
## Book171 -0.107293260228004589 1.095112332261455990
## Book172 -0.055826938752028474 0.569809967278764873
## Book173 -0.095995533608133773 0.979799592937037334
## Book174 -0.193888048301072868 1.978961141840571258
## Book175 0.077320738613641374 -0.789191177669722799
## Book176 0.246659941836061908 -2.517589116087460610
## Book177 -0.177191881083272024 1.808548027513930290
## Book178 -0.065972522934056879 0.673363110618109384
## Book179 -0.086766516348306136 0.885601592108155256
## Book18 0.058276734744155990 -0.594814350562503757
## Book180 -0.057048368106235529 0.582276755462252993
## Book181 0.211375084770603017 -2.157446437671755923
## Book182 -0.095953961458315098 0.979375277617988482
## Book183 -0.049078393098069745 0.500929447153140361
## Book184 -0.113826026628140370 1.161790453826302194
## Book185 0.184505618604227734 -1.883197303126404654
## Book186 -0.037733155449834972 0.385131776035523343
## Book187 -0.133762841905644109 1.365279957547383294
## Book188 -0.210134840375592075 2.144787609623205249
## Book189 0.137186613979246474 -1.400225442591699565
## Book19 -0.269099985828450183 2.746628375965786795
## Book190 -0.073485204294212750 0.750042950417683763
## Book191 0.065090608062115432 -0.664361651903776718
## Book192 0.024185592266357789 -0.246855583450921456
## Book193 0.032078361853430763 -0.327414877596086562
## Book194 0.061454034766039979 -0.627244164232679813
## Book195 0.008964246554042250 -0.091495560204829601
## Book196 0.195629138120094720 -1.996731959209092633
## Book197 0.268653588716518066 -2.742072125355776713
## Book198 -0.283466133030203238 2.893259626934300055
## Book199 0.132536472078059214 -1.352762743332358797
## Book2 0.118962175349050611 -1.214213688917161083
## Book20 0.048111354300308419 -0.491059152309326008
## Book200 -0.049193211416618178 0.502101365653370713
## Book201 -0.249345296159677765 2.544997777451967647
## Book202 -0.271578477808138430 2.771925651177661543
## Book203 0.068921184724012791 -0.703459277730436927
## Book204 -0.024273677039374084 0.247754640120556896
## Book205 -0.001802940249089774 0.018402107428867952
## Book206 -0.159078301519260334 1.623667781356854967
## Book207 0.426956375975073299 -4.357824449311690884
## Book208 0.045234957458067375 -0.461700573329410446
## Book209 0.047442240650840226 -0.484229696221775141
## Book21 0.292367530749009674 -2.984113706636169816
## Book210 0.134438892838826041 -1.372180220551697305
## Book211 -0.033629390374841077 0.343245792397969485
## Book212 0.022350478795774641 -0.228125092938615104
## Book213 -0.020924149539668160 0.213566948700034842
## Book214 0.012317733306111911 -0.125723662608116876
## Book215 0.204685927902100634 -2.089172082287630072
## Book216 0.044361942311867165 -0.452789951629380405
## Book217 0.065619168252671459 -0.669756518103114429
## Book218 -0.059602085880833988 0.608341839346692614
## Book219 0.260558897258895750 -2.659451871089517194
## Book22 -0.168837858595826118 1.723280853876459906
## Book220 0.068970675378559609 -0.703964415015019274
## Book221 -0.112820376527755520 1.151526064203593158
## Book222 -0.161295482842942428 1.646297931706136808
## Book223 -0.126879681671319577 1.295025464007695248
## Book224 0.275740650447574009 -2.814407784507944044
## Book225 0.162511971723771770 -1.658714293858087663
## Book226 0.288907144183119635 -2.948794507698184297
## Book227 -0.007240973370657248 0.073906592258756093
## Book228 0.055764589119376644 -0.569173581997112876
## Book229 -0.188069926952588617 1.919577202665090354
## Book23 -0.018285307839249944 0.186633028686114172
## Book230 -0.116253048327099470 1.186562386262212332
## Book231 -0.156562196642117568 1.597986601808698115
## Book232 0.230880341540462108 -2.356531144271281519
## Book233 -0.124989138667644550 1.275729219736656539
## Book234 -0.120396405925730907 1.228852479727430946
## Book235 -0.006621350375735286 0.067582273455787142
## Book236 0.137584518841800146 -1.404286746359740601
## Book237 0.192853702213128142 -1.968403860289724694
## Book238 -0.173143545541369986 1.767227797635108733
## Book239 0.235335945584945028 -2.402008249975951415
## Book24 -0.033601675608294697 0.342962915518604361
## Book240 -0.055623037255296763 0.567728801666286698
## Book241 0.049105126643602004 -0.501202308983735967
## Book242 -0.217514886781562777 2.220113681500099023
## Book243 -0.113580552981589547 1.159284972894774501
## Book244 -0.087118889808677505 0.889198169574379471
## Book245 -0.217388190705923912 2.218820530051569317
## Book246 -0.107819840792379162 1.100486992969410327
## Book247 -0.111917666988827935 1.142312360132813343
## Book248 -0.186692107130014884 1.905514180662323698
## Book249 -0.003483642877488500 0.035556569613278244
## Book25 -0.085881623445015071 0.876569737459826026
## Book250 -0.183154515143032187 1.869406967560389266
## Book251 -0.098206776053270661 1.002369126812169275
## Book252 0.046193096530087144 -0.471480031158921009
## Book253 0.034699386918212324 -0.354166948187557895
## Book254 -0.076137903377903784 0.777118308871287744
## Book255 -0.007722022532848975 0.078816526664895414
## Book256 0.435528157342523703 -4.445314227001322394
## Book257 0.051680620306200790 -0.527489653273392145
## Book258 -0.151678458851470632 1.548139654566129453
## Book259 -0.044218410821605755 0.451324965807170908
## Book26 -0.175182560508685276 1.788039453759893815
## Book260 0.008093211034024260 -0.082605143996183156
## Book261 0.224187225419595987 -2.288216377904388477
## Book262 0.190159009647925703 -1.940899886102203098
## Book263 0.139083095861467693 -1.419582303336888396
## Book264 -0.104676194415586885 1.068400672652750405
## Book265 -0.132086098529609564 1.348165906345739629
## Book266 -0.086051871296654953 0.878307409718788068
## Book267 0.131354302259344913 -1.340696666259577841
## Book268 0.246865822958975301 -2.519690487191322159
## Book269 -0.034866656738503081 0.355874224512524817
## Book27 0.116222372713357378 -1.186249288842692096
## Book270 0.256375947136627036 -2.616757667796632436
## Book271 0.087903820181861020 -0.897209734604774489
## Book272 0.254907064509687531 -2.601765193190233472
## Book273 -0.211888789172718417 2.162689674988798494
## Book274 0.045316122131523563 -0.462528998476124886
## Book275 -0.042605015483390796 0.434857490329792429
## Book276 0.142452419622992071 -1.453972049671242273
## Book277 -0.233690412313534324 2.385212751592935554
## Book278 -0.200769228909215586 2.049195429888875264
## Book279 0.006691635697267841 -0.068299656096815736
## Book28 0.031080630257773613 -0.317231309938909245
## Book280 0.208635282134909839 -2.129482037597287380
## Book281 -0.042737650437575256 0.436211258252472811
## Book282 0.167973760359521385 -1.714461244584576161
## Book283 -0.091070223667668343 0.929528330375420264
## Book284 0.118791927497410715 -1.212476016658198263
## Book285 -0.124092368007261783 1.266576132140027511
## Book286 0.108749283876838743 -1.109973558870784416
## Book287 0.063122859637347345 -0.644277393468790205
## Book288 -0.015499973801373874 0.158203902309829308
## Book289 0.008012046360568051 -0.081776718849467855
## Book29 -0.121572303877755111 1.240854541609103023
## Book290 -0.192876459322142868 1.968636135743712323
## Book291 0.043403803239847320 -0.443010493799870009
## Book292 -0.039259447236048434 0.400710209892036984
## Book293 0.043015796508203252 -0.439050217488745620
## Book294 0.276122718300673031 -2.818307444344918533
## Book295 0.114593140365687032 -1.169620169434247625
## Book296 0.025220936759470566 -0.257423055444380766
## Book297 0.025084342552922335 -0.256028876538933414
## Book298 0.053961149667702497 -0.550766379346938728
## Book299 -0.121596059391937281 1.241097007505703287
## Book3 -0.087006051116311253 0.888046456565532716
## Book30 -0.147513325364838827 1.505627300695692838
## Book300 -0.067944230611188830 0.693487780035863421
## Book31 -0.102326378137719942 1.044416754380788515
## Book32 -0.135077313690398965 1.378696403825885985
## Book33 -0.028086437065634948 0.286670416524766547
## Book34 0.165542779408198282 -1.689648901165899719
## Book35 0.005464267464515099 -0.055772251439178099
## Book36 -0.180725513817891065 1.844614829633096864
## Book37 -0.112028526055011790 1.143443867650277834
## Book38 0.014477505470520246 -0.147767853707282709
## Book39 0.024708213578369078 -0.252189833176109324
## Book4 0.195415338492453988 -1.994549766139698033
## Book40 0.139698759604025780 -1.425866211157090335
## Book41 -0.059724822704109101 0.609594579812456350
## Book42 -0.074146399438953722 0.756791584539700746
## Book43 -0.158278532541789196 1.615504762838007258
## Book44 0.325961787055160990 -3.327000895410546999
## Book45 0.037215491795355521 -0.379848127735715524
## Book46 -0.008254541975769143 0.084251803846999360
## Book47 -0.386458164767610857 3.944470521641178173
## Book48 0.104896931326940682 -1.070653672638908649
## Book49 -0.126921253821138807 1.295449779326743878
## Book5 -0.126044279422575428 1.286498746643948365
## Book50 0.117109245242830298 -1.195301348982404477
## Book51 -0.008414891696499996 0.085888448649045712
## Book52 -0.007563652438300434 0.077200087354233254
## Book53 -0.147471753215019402 1.505202985376644653
## Book54 -0.119553085172258836 1.220244940398151456
## Book55 -0.076460582445547154 0.780411803966763684
## Book56 0.082206456030470082 -0.839058330403674613
## Book57 -0.105858031246156767 1.080463351008572381
## Book58 0.067444383592345933 -0.688385981158505134
## Book59 -0.157508457957046155 1.607644826689909268
## Book6 -0.109431256504412794 1.116934262955405543
## Book60 0.004864440731411830 -0.049649987550042497
## Book61 0.186289261794082922 -1.901402450862746063
## Book62 -0.122067210423220385 1.245905914454924934
## Book63 0.040921352007795717 -0.417672807605228125
## Book64 -0.039095138262954299 0.399033154107225063
## Book65 -0.018461494569435254 0.188431317419226307
## Book66 0.080624734711164700 -0.822914142788428893
## Book67 -0.136320518932606577 1.391385452414590329
## Book68 0.168397400362439109 -1.718785219740599279
## Book69 -0.047765900939497882 0.487533206366021099
## Book7 0.285074587895040366 -2.909676676380140936
## Book70 -0.081868921174386863 0.835613206425902755
## Book71 0.128341644198699673 -1.309947307091174018
## Book72 0.167924269704974788 -1.713956107299993814
## Book73 0.098112752401709177 -1.001409453668384186
## Book74 -0.101138602428604396 1.032293459550817083
## Book75 0.023563989645254094 -0.240511059156569534
## Book76 -0.072143017742912111 0.736343627259815170
## Book77 -0.290731361117626819 2.967413780310961258
## Book78 0.099969641760293021 -1.020362204585907318
## Book79 -0.051592518349031669 0.526590421209914838
## Book8 -0.188388646767867762 1.922830286777800435
## Book80 0.129578910562361593 -1.322575739205728240
## Book81 0.052765455453859814 -0.538562262551433468
## Book82 -0.021997106930236019 0.224518325029776700
## Book83 -0.242444319289716159 2.474561434489829903
## Book84 0.011177468625361141 -0.114085299571343834
## Book85 0.447849350698415583 -4.571073205370900006
## Book86 0.152972153153392132 -1.561344030882028999
## Book87 -0.057396782314242695 0.585832921945711238
## Book88 -0.241454506198786695 2.464458688798186969
## Book89 0.268821856941975967 -2.743789592123356158
## Book9 0.067074193496338183 -0.684607554269830221
## Book90 0.081177050415903271 -0.828551474884365424
## Book91 -0.004008243815681067 0.040911024829849318
## Book92 0.411430167830751259 -4.199352780392572093
## Book93 0.034602385235301285 -0.353176879109776798
## Book94 -0.187163258161296864 1.910323087611545567
## Book95 -0.283529481068022560 2.893906202658564908
## Book96 -0.101293013270789253 1.033869487878712246
## Book97 0.198368940755787926 -2.024696359283562064
## Book98 -0.007233054865929929 0.073825770293223431
## Book99 -0.201737266112145125 2.059075915175302640
## Dogo 0.099369232675151034 -0.527917081754258444
## Ducksters -0.021741882670640676 0.115507697325723510
## EIM 0.230294798366586673 0.653053348119588373
## Encyclopedia -0.312234021290791475 1.658799901203920513
## Factmonster 0.151833365130241038 -0.806642306422207467
## GreenLine 0.017941569320019550 -0.549373755180027734
## History 0.202400503907516904 -1.075289407917243700
## HT 0.121927214498349479 0.086960875615531508
## JTT 0.247758334076155884 -0.021775499158273592
## NGL -0.139591833587988712 -0.938609904491786384
## POC -0.177482969817485542 0.508438391759810537
## Quatr -0.019996065532907541 0.106232726956952850
## Revision -0.349655979247276705 1.857610844048817711
## Science -0.248739004374091216 1.321471100988788283
## Science_Tech -0.615895267953887049 3.272055381442160460
## Solutions 0.359259508325638133 -1.851303174151808006
## Spoken.BNC2014 0.000000000001867724 -0.000000000004034576
## Teen 0.202780076659240832 -1.077305957044264684
## TeenVogue 0.397823480753262571 -2.113509437062586205
## TweenTribute 0.137740204861002857 -0.731769834916360828
## WhyFiles 0.162872297839301933 -0.865288639744527854
## World 0.022905454568807802 -0.121689384195500794
## RegisterInformative
## Access 0.5615235185719618105
## Achievers -0.3756352752817902485
## BBC 0.6603687394464143878
## Book1 -0.0063899729766186564
## Book10 0.3644193533788371853
## Book100 -0.1186906861668776958
## Book101 0.4770310148889069790
## Book102 0.2590907925149980029
## Book103 -0.3618937320347312414
## Book104 0.5291321333638362434
## Book105 0.5105305138765009465
## Book106 0.5661902631225959048
## Book107 -0.1992884906617814200
## Book108 -0.5413800121920643305
## Book109 -0.1651740049972289792
## Book11 0.3277136317158632628
## Book110 0.4699552131225505636
## Book111 1.3979977485039027929
## Book112 -0.2577675046741591536
## Book113 -0.1333743568245996380
## Book114 -0.2637100725638726884
## Book115 0.5712967255301519831
## Book116 0.7467268576046225403
## Book117 -0.5412970926401147187
## Book118 0.1147762223095736278
## Book119 -0.0283152845045960173
## Book12 -0.2979005678177121808
## Book120 -0.1188081555321393173
## Book121 -0.2525090230880291386
## Book122 0.3804366468304138382
## Book123 -0.2161557095208407053
## Book124 -0.0941326788645035495
## Book125 0.6252497139986200603
## Book126 -0.1988877128273589812
## Book127 -0.1187252359801900109
## Book128 -0.3200953678895256393
## Book129 -0.4017849464850984376
## Book13 0.5297402100781325451
## Book130 -0.0032390300025379416
## Book131 -0.2696941002295611400
## Book132 -0.5741677850254250925
## Book133 -0.2317860450633191516
## Book134 -0.1669844152147932081
## Book135 -0.1278740265452835423
## Book136 -0.2893391240789273122
## Book137 -0.2582995717991687368
## Book138 0.0999889022119144349
## Book139 -0.3692873920835610391
## Book14 0.0728534788364440244
## Book140 -0.1209986136961384295
## Book141 -0.2660110901304712505
## Book142 -0.0149790565660533961
## Book143 -0.0984514055285395651
## Book144 -0.3977564382528852582
## Book145 -0.7797875439721724256
## Book146 -0.0983823059019151847
## Book147 -0.1732379314243169544
## Book148 0.1758326523950474729
## Book149 0.4529290651222553921
## Book15 -0.3275995873409546788
## Book150 -0.6004671029187380604
## Book151 -0.1130106968583375754
## Book152 0.9357557961988094419
## Book153 -0.7150757436382577659
## Book154 -0.2086584000320740317
## Book155 -0.6534250567638126839
## Book156 -0.4210913821640047683
## Book157 -0.0495841495796404685
## Book158 0.2248450175598587508
## Book159 -0.3534013879225710864
## Book16 0.2411041597046211238
## Book160 0.2049857848679559336
## Book161 0.6979287012823477410
## Book162 -0.1434490823864626452
## Book163 -0.2512444999207997243
## Book164 -0.6208031230343508122
## Book165 -0.2657830613626100957
## Book166 0.1524838885586039250
## Book167 0.1825284062149687414
## Book168 -0.0243696958243329598
## Book169 1.4148304175496493329
## Book17 1.3747802739580454734
## Book170 -0.7530252585804741994
## Book171 -0.3745113238563787528
## Book172 -0.1948661145578087783
## Book173 -0.3350761669417336996
## Book174 -0.6767738206002564816
## Book175 0.2698910641564190582
## Book176 0.8609761802656946683
## Book177 -0.6184951955050901340
## Book178 -0.2302796732029033511
## Book179 -0.3028619210093572711
## Book18 0.2034172233435778132
## Book180 -0.1991295615205452008
## Book181 0.7378130057700523770
## Book182 -0.3349310577258218791
## Book183 -0.1713100518414917561
## Book184 -0.3973142006424880690
## Book185 0.6440240825525170854
## Book186 -0.1317090558229474795
## Book187 -0.4669044346160975967
## Book188 -0.7334838841710443758
## Book189 0.4788552450317958287
## Book19 -0.9393040320350036776
## Book190 -0.2565029815069297392
## Book191 0.2272013148277564065
## Book192 0.0844207563333977673
## Book193 0.1119707774686158203
## Book194 0.2145077134168224542
## Book195 0.0312900534217623177
## Book196 0.6828511627528655037
## Book197 0.9377458654455970155
## Book198 -0.9894496310764576696
## Book199 0.4626237427376831413
## Book2 0.4152421287612120815
## Book20 0.1679345650718589988
## Book200 -0.1717108296759137787
## Book201 -0.8703495146263401372
## Book202 -0.9479553052884001074
## Book203 0.2405720925796119292
## Book204 -0.0847282196808992749
## Book205 -0.0062932334993443893
## Book206 -0.5552690371436035388
## Book207 1.4903079397116723026
## Book208 0.1578943893233080431
## Book209 0.1655989976919482187
## Book21 1.0205203081791753839
## Book210 0.4692642168563045946
## Book211 -0.1173847032236727955
## Book212 0.0780152209452996542
## Book213 -0.0730365628560209895
## Book214 0.0429955301719649741
## Book215 0.7144642419336086903
## Book216 0.1548470957891642519
## Book217 0.2290462748586329089
## Book218 -0.2080434133551151699
## Book219 0.9094910281188085532
## Book22 -0.5893351530695195573
## Book220 0.2407448416461731855
## Book221 -0.3938039396099601852
## Book222 -0.5630081953255563487
## Book223 -0.4428784944387330613
## Book224 0.9624835317771952559
## Book225 0.5672543973726142941
## Book226 1.0084416934451998493
## Book227 -0.0252749009331146822
## Book228 0.1946484807249193039
## Book229 -0.6564654403352936374
## Book23 -0.0638255826269653326
## Book230 -0.4057858148666613762
## Book231 -0.5464864745996201867
## Book232 0.8058968678832458821
## Book233 -0.4362794800960859143
## Book234 -0.4202483667191845296
## Book235 -0.0231120826197654290
## Book236 0.4802441475269499382
## Book237 0.6731633951001001481
## Book238 -0.6043643218603645950
## Book239 0.8214493281750971931
## Book24 -0.1172879637463989655
## Book240 -0.1941543884035759615
## Book241 0.1714033663284124376
## Book242 -0.7592442249766863105
## Book243 -0.3964573652723434871
## Book244 -0.3040918943632741067
## Book245 -0.7588019873662892323
## Book246 -0.3763493739245923897
## Book247 -0.3906529966358789907
## Book248 -0.6516561063222233718
## Book249 -0.0121597917997705411
## Book25 -0.2997731676992387850
## Book250 -0.6393080030444115991
## Book251 -0.3427945952356988291
## Book252 0.1612388112519374250
## Book253 0.1211195680337094072
## Book254 -0.2657623314746229148
## Book255 -0.0269540218600921484
## Book256 1.5202280780401131732
## Book257 0.1803932277522697081
## Book258 -0.5294395967113377788
## Book259 -0.1543460935051582106
## Book26 -0.6114815834026954278
## Book260 0.0282496698502808716
## Book261 0.7825342841214772971
## Book262 0.6637574652417366217
## Book263 0.4854749892624300456
## Book264 -0.3653763532166096617
## Book265 -0.4610516962409961783
## Book266 -0.3003674244882098554
## Book267 0.4584973327200473903
## Book268 0.8616948163825901563
## Book269 -0.1217034298877091719
## Book27 0.4056787404363708660
## Book270 0.8948902770130360285
## Book271 0.3068317245499167512
## Book272 0.8897630847174925472
## Book273 -0.7396061110899827540
## Book274 0.1581776977924686800
## Book275 -0.1487144739352552758
## Book276 0.4972357457139326420
## Book277 -0.8157055298916265906
## Book278 -0.7007928508149583458
## Book279 0.0233574162852608867
## Book28 0.1084881562867370114
## Book280 0.7282496174452113280
## Book281 -0.1491774414336400623
## Book282 0.5863189843583345162
## Book283 -0.3178841798375394712
## Book284 0.4146478719722406225
## Book285 -0.4331492670099929554
## Book286 0.3795936313855939881
## Book287 0.2203328119412739372
## Book288 -0.0541032651608876133
## Book289 0.0279663613811198843
## Book29 -0.4243528845406843719
## Book290 -0.6732428296797409173
## Book291 0.1515026738605349810
## Book292 -0.1370366370357019858
## Book293 0.1501483211786930339
## Book294 0.9638171545710493282
## Book295 0.3999918411651687267
## Book296 0.0880346668058628878
## Book297 0.0875578793821530643
## Book298 0.1883535047394208628
## Book299 -0.4244358040926342612
## Book3 -0.3036980264915144501
## Book30 -0.5149010352695266857
## Book300 -0.2371619960147110240
## Book31 -0.3571742275362724817
## Book32 -0.4714926498239693231
## Book33 -0.0980368077687921030
## Book34 0.5778335502088365327
## Book35 0.0190732394345373389
## Book36 -0.6308294788575763423
## Book37 -0.3910399545449769754
## Book38 0.0505342994367061066
## Book39 0.0862449864762862978
## Book4 0.6821048867853202191
## Book40 0.4876239876504543935
## Book41 -0.2084718310401875996
## Book42 -0.2588109090361902509
## Book43 -0.5524774122279708655
## Book44 1.1377823745610786688
## Book45 0.1299021305776928426
## Book46 -0.0288128018162931016
## Book47 -1.3489473485534706487
## Book48 0.3661468440444518024
## Book49 -0.4430236036546443823
## Book5 -0.4399624901951756928
## Book50 0.4087744037091518012
## Book51 -0.0293725087919520338
## Book52 -0.0264012248470957382
## Book53 -0.5147559260536156422
## Book54 -0.4173047226249779751
## Book55 -0.2668886553886033464
## Book56 0.2869448520073640818
## Book57 -0.3695016009260966849
## Book58 0.2354172604334186514
## Book59 -0.5497894367522749848
## Book6 -0.3819740835318325978
## Book60 0.0169795207478127923
## Book61 0.6502499589113912570
## Book62 -0.4260803752062984895
## Book63 0.1428375806818133198
## Book64 -0.1364631101347182907
## Book65 -0.0644405693039239863
## Book66 0.2814237918400605554
## Book67 -0.4758321063759926028
## Book68 0.5877977163681004091
## Book69 -0.1667287465962818405
## Book7 0.9950640057306819886
## Book70 -0.2857666733824367755
## Book71 0.4479815318559355886
## Book72 0.5861462352917730101
## Book73 0.3424664020002097797
## Book74 -0.3530282499387982775
## Book75 0.0822510280573860997
## Book76 -0.2518180268217836137
## Book77 -1.0148091940476759998
## Book78 0.3489479469775950138
## Book79 -0.1800857044228123538
## Book8 -0.6575779443239496702
## Book80 0.4523002585199716319
## Book81 0.1841798872912963347
## Book82 -0.0767817626190729907
## Book83 -0.8462613847850133375
## Book84 0.0390153916783894245
## Book85 1.5632356856512485965
## Book86 0.5339552873022317403
## Book87 -0.2003457149491376932
## Book88 -0.8428064034537846583
## Book89 0.9383332122719061363
## Book9 0.2341250974155389686
## Book90 0.2833516714228861422
## Book91 -0.0139909319053218885
## Book92 1.4361131025500182279
## Book93 0.1207809798632489551
## Book94 -0.6533006774358884883
## Book95 -0.9896707498816562643
## Book96 -0.3535672270264694772
## Book97 0.6924145510777067747
## Book98 -0.0252472610824649654
## Book99 -0.7041718225568998069
## Dogo 0.3443957167058526725
## Ducksters -0.0753534173839083277
## EIM 0.6082591921844688887
## Encyclopedia -1.0821464214575564622
## Factmonster 0.5262268732097243884
## GreenLine -0.0002086143628867998
## History 0.7014833940877389651
## HT -0.8570592554569849142
## JTT -0.3625325679788663491
## NGL 0.0102362637763926956
## POC -0.5429259138278393904
## Quatr -0.0693027321949278019
## Revision -1.2118441325498410244
## Science -0.8620842224289650968
## Science_Tech -2.1345811627242272657
## Solutions 0.9583426523761301441
## Spoken.BNC2014 0.0000000000003884903
## Teen 0.7027989243213272896
## TeenVogue 1.3787839463784812288
## TweenTribute 0.4773825387924300889
## WhyFiles 0.5644858094987162955
## World 0.0793861462983100619
##
## with conditional variances for "Source"
## Plot predicted vs. observed values
dimensions_ref[, "predicted"] <- predict(md_final2)
dimensions_ref %>%
ggplot(aes(x = Corpus, y = Dim2)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
geom_point(aes(y = predicted), shape = "circle filled", fill = "red", position = position_jitter(width = 0.2, height = 0)) +
facet_wrap(vars(Register))
## Compare means
comparisons <- emmeans(md_final2, "Corpus", by = "Register")
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
pairs(comparisons)
## Register = Conversation:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -1.1520 0.518 Inf -2.223 0.0262
##
## Register = Fiction:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -2.2559 0.562 Inf -4.017 0.0001
##
## Register = Informative:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -0.0027 0.487 Inf -0.006 0.9956
##
## Degrees-of-freedom method: asymptotic
# This is a warning that the degrees of freedom have been calculated according to the naive 'asymptotic' method (i.e. are assumed to be infinite), because we have a very large number of observations and so a more complex estimation method like Kenward-Roger might take a lot of computation.
visreg(md_final2, xvar = "Corpus", by="Register", type = "conditional", line=list(col="darkred"), ylab = "Dimension 2 (Biber 1988)")
emmeans(md_final2, ~ Corpus*Register)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Corpus Register emmean SE df asymp.LCL asymp.UCL
## Textbook Conversation -3.10 0.186 Inf -3.47 -2.737
## Reference Conversation -1.95 0.484 Inf -2.90 -1.002
## Textbook Fiction 2.65 0.551 Inf 1.56 3.726
## Reference Fiction 4.90 0.106 Inf 4.69 5.110
## Textbook Informative -1.73 0.388 Inf -2.50 -0.973
## Reference Informative -1.73 0.293 Inf -2.31 -1.157
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
TxBzscores %>% filter(Register=="Fiction") %>%
#filter(Level %in% c("C", "D", "E")) %>%
select(Level, Past_tense, TPP3, Perfect_aspect, Public_verbs, Syn_negation, Present_part_clauses) %>%
group_by(Level) %>%
summarise_if(is.numeric, mean) %>%
mutate_if(is.numeric, round, 2)
## # A tibble: 5 × 7
## Level Past_tense TPP3 Perfect_aspect Public_verbs Syn_negation
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 A -0.2 0.99 -1.24 1.14 -0.51
## 2 B 1.86 1.18 -1.24 1.59 -0.34
## 3 C 1.71 1.08 -0.47 0.99 0.17
## 4 D 1.34 1.04 -0.31 0.22 0.08
## 5 E 0.88 1.09 -0.53 0.21 0.12
## # … with 1 more variable: Present_part_clauses <dbl>
YFzscores %>%
select(Past_tense, TPP3, Perfect_aspect, Public_verbs, Syn_negation, Present_part_clauses) %>%
summarise_if(is.numeric, mean) %>%
round(2)
## Past_tense TPP3 Perfect_aspect Public_verbs Syn_negation Present_part_clauses
## 1 1.49 1.18 -0.26 1.04 0.27 1.19
TxBcounts %>% filter(Register=="Fiction") %>%
#filter(Level %in% c("C", "D", "E")) %>%
select(Level, Past_tense, TPP3, Perfect_aspect, Public_verbs, Syn_negation, Present_part_clauses) %>%
group_by(Level) %>%
summarise_if(is.numeric, mean) %>%
mutate_if(is.numeric, round, 2)
## # A tibble: 5 × 7
## Level Past_tense TPP3 Perfect_aspect Public_verbs Syn_negation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 A 3.41 5.21 0.22 1.39 0.09
## 2 B 9.67 5.64 0.21 1.63 0.12
## 3 C 9.22 5.42 0.61 1.3 0.2
## 4 D 8.08 5.33 0.7 0.89 0.18
## 5 E 6.68 5.45 0.58 0.88 0.19
## # … with 1 more variable: Present_part_clauses <dbl>
YFcounts %>%
select(Past_tense, TPP3, Perfect_aspect, Public_verbs, Syn_negation, Present_part_clauses) %>%
summarise_if(is.numeric, mean) %>%
round(2)
## Past_tense TPP3 Perfect_aspect Public_verbs Syn_negation Present_part_clauses
## 1 8.54 5.64 0.72 1.33 0.21 0.3
TxBFictioncounts <- TxBcounts %>% filter(Register=="Fiction")
Fictioncounts <- merge(YFcounts, TxBFictioncounts, all = TRUE)
Fictioncounts$Level <- ifelse(is.na(Fictioncounts$Level), "Youth Fiction", Fictioncounts$Level)
Fictioncounts$Register <- ifelse(is.na(Fictioncounts$Register), "Youth Fiction", Fictioncounts$Register)
Fictioncounts %>%
select(Level, Past_tense, TPP3, Perfect_aspect, Public_verbs, Syn_negation, Present_part_clauses) %>%
group_by(Level) %>%
summarise_if(is.numeric, mean) %>%
mutate_if(is.numeric, round, 2)
## # A tibble: 6 × 7
## Level Past_tense TPP3 Perfect_aspect Public_verbs Syn_negation
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 A 3.41 5.21 0.22 1.39 0.09
## 2 B 9.67 5.64 0.21 1.63 0.12
## 3 C 9.22 5.42 0.61 1.3 0.2
## 4 D 8.08 5.33 0.7 0.89 0.18
## 5 E 6.68 5.45 0.58 0.88 0.19
## 6 Youth Fiction 8.54 5.64 0.72 1.33 0.21
## # … with 1 more variable: Present_part_clauses <dbl>
Dim2Fiction <- Fictioncounts %>%
select(Level, Past_tense, TPP3, Perfect_aspect, Public_verbs, Syn_negation, Present_part_clauses)
london <- suffrager::suf_palette("london")
hanwell <- suffrager::suf_palette("hanwell")
colours <- c(london, hanwell[3:4])
Dim2FictionFeature <- Dim2Fiction %>% ggplot(aes(x = Level, y = Present_part_clauses, colour = Level, fill = Level)) +
geom_jitter(size=0.7, alpha=.7) +
geom_boxplot(outlier.shape = NA, fatten = 2, fill = "white", alpha = 0.3) +
scale_colour_manual(values = colours) +
theme_minimal() +
theme(legend.position = "none") +
xlab("")
Dim2FictionFeature
Ppc <- Dim2FictionFeature + ylab("Present participial clauses ")
past <- Dim2FictionFeature + aes(y = Past_tense) + ylab("Past tense verbs ")
TPP3 <- Dim2FictionFeature + aes(y = TPP3) + ylab("Third person pronouns ")
SynNeg <- Dim2FictionFeature + aes(y = Syn_negation) + ylim(c(-0.01,0.75)) + ylab("Synthetic negation ") # These y-axis limits remove three outliers that overextend the scale and make the real differences invisible
PerAsp <- Dim2FictionFeature + aes(y = Perfect_aspect) + ylab("Perfect aspect verbs")
public <- Dim2FictionFeature + aes(y = Public_verbs) + ylab("Public verbs")
grid.arrange(past, TPP3, PerAsp, public, SynNeg, Ppc, ncol=2, nrow=3)
## Warning: Removed 3 rows containing non-finite values (stat_boxplot).
## Warning: Removed 3 rows containing missing values (geom_point).
#ggsave(here("plots", "Dim2FictionFeatures.svg"), dpi = 300)
NarrativeTxBdim <- filter(TxBdimensions, Register == "Fiction")
summary(NarrativeTxBdim$Dim1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -20.096 -0.172 5.381 5.027 10.467 27.151
summary(NarrativeTxBdim$Dim2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5.3971 0.4579 2.5474 2.5253 4.1941 10.6745
boxplot(NarrativeTxBdim$Dim2)
boxplot(NarrativeTxBdim$Dim2 ~ NarrativeTxBdim$Level) # We can see that the past tense is probably not taught until level B
boxplot(NarrativeTxBdim$Dim2 ~ NarrativeTxBdim$Series)
boxplot(NarrativeTxBdim$Dim2 ~ NarrativeTxBdim$Country)
options(contrasts=c("contr.treatment", "contr.poly")) # Standard option
options(contrasts=c("contr.sum", "contr.poly")) # Gries 2013: 5.2.1
lm <- lm(Dim2 ~ Series + Level, NarrativeTxBdim)
summary(lm)
##
## Call:
## lm(formula = Dim2 ~ Series + Level, data = NarrativeTxBdim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.6258 -1.6533 0.0481 1.3697 7.1756
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.45785 0.26349 9.328 < 0.0000000000000002 ***
## Series1 0.50173 0.38853 1.291 0.197679
## Series2 1.06356 0.50213 2.118 0.035071 *
## Series3 1.22427 0.81102 1.510 0.132324
## Series4 -0.46067 0.38206 -1.206 0.228958
## Series5 -0.18670 0.60178 -0.310 0.756607
## Series6 0.03592 0.50487 0.071 0.943330
## Series7 -1.06412 0.38634 -2.754 0.006277 **
## Series8 0.45962 1.33908 0.343 0.731684
## Level1 -2.42326 0.37193 -6.515 0.00000000035 ***
## Level2 0.62393 0.31491 1.981 0.048566 *
## Level3 1.07940 0.31871 3.387 0.000812 ***
## Level4 0.49484 0.29039 1.704 0.089512 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.567 on 272 degrees of freedom
## Multiple R-squared: 0.2103, Adjusted R-squared: 0.1754
## F-statistic: 6.035 on 12 and 272 DF, p-value: 0.000000002342
TukeyHSD(aov(lm), ordered = TRUE)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
## factor levels have been ordered
##
## Fit: aov(formula = lm)
##
## $Series
## diff lwr upr p adj
## NGL-Solutions 0.4848200 -3.2423715 4.212012 0.9999790
## GreenLine-Solutions 1.0628021 -2.6583378 4.783942 0.9931995
## POC-Solutions 1.6051867 -4.2566203 7.466994 0.9948896
## HT-Solutions 1.7460756 -2.3115766 5.803728 0.9164965
## JTT-Solutions 1.8531129 -2.0438396 5.750065 0.8608883
## Access-Solutions 2.1468819 -1.5824525 5.876216 0.6821436
## Achievers-Solutions 2.6250771 -1.2718753 6.522030 0.4711284
## EIM-Solutions 3.0277867 -1.4492424 7.504816 0.4654428
## GreenLine-NGL 0.5779821 -0.8249622 1.980926 0.9341260
## POC-NGL 1.1203667 -3.6211681 5.861901 0.9981756
## HT-NGL 1.2612556 -0.8802186 3.402730 0.6542882
## JTT-NGL 1.3682929 -0.4503904 3.186976 0.3147804
## Access-NGL 1.6620619 0.2375248 3.086599 0.0094684
## Achievers-NGL 2.1402571 0.3215739 3.958940 0.0084802
## EIM-NGL 2.5429667 -0.3145077 5.400441 0.1253146
## POC-GreenLine 0.5423846 -4.1943946 5.279164 0.9999922
## HT-GreenLine 0.6832735 -1.4476505 2.814197 0.9854194
## JTT-GreenLine 0.7903108 -1.0159379 2.596559 0.9087775
## Access-GreenLine 1.0840798 -0.3245477 2.492707 0.2846289
## Achievers-GreenLine 1.5622751 -0.2439736 3.368524 0.1510745
## EIM-GreenLine 1.9649846 -0.8845917 4.814561 0.4374723
## HT-POC 0.1408889 -4.8645818 5.146360 1.0000000
## JTT-POC 0.2479262 -4.6281823 5.124035 1.0000000
## Access-POC 0.5416952 -4.2015242 5.284915 0.9999923
## Achievers-POC 1.0198905 -3.8562180 5.895999 0.9992433
## EIM-POC 1.4226000 -3.9284732 6.773673 0.9958294
## JTT-HT 0.1070373 -2.3178737 2.531948 1.0000000
## Access-HT 0.4008063 -1.7443954 2.546008 0.9996708
## Achievers-HT 0.8790016 -1.5459094 3.303913 0.9686381
## EIM-HT 1.2817111 -1.9951386 4.558561 0.9508669
## Access-JTT 0.2937690 -1.5293018 2.116840 0.9998917
## Achievers-JTT 0.7719643 -1.3732374 2.917166 0.9699916
## EIM-JTT 1.1746738 -1.9009467 4.250294 0.9572116
## Achievers-Access 0.4781952 -1.3448757 2.301266 0.9961996
## EIM-Access 0.8809048 -1.9793642 3.741174 0.9887762
## EIM-Achievers 0.4027095 -2.6729110 3.478330 0.9999779
##
## $Level
## diff lwr upr p adj
## E-A 2.5476502 1.1087512 3.986549 0.0000193
## D-A 2.8549365 1.4056483 4.304225 0.0000014
## B-A 3.0196265 1.5084193 4.530834 0.0000009
## C-A 3.4452044 1.9227590 4.967650 0.0000000
## D-E 0.3072864 -0.8802712 1.494844 0.9539704
## B-E 0.4719763 -0.7904039 1.734357 0.8428572
## C-E 0.8975542 -0.3782579 2.173366 0.3029163
## B-D 0.1646899 -1.1095197 1.438900 0.9965865
## C-D 0.5902679 -0.6972503 1.877786 0.7165284
## C-B 0.4255779 -0.9312617 1.782418 0.9106869
par(mfrow = c(1,2))
car::crPlot(lm, var = "Series")
car::crPlot(lm, var = "Level")
par(mfrow = c(1,1))
car::influencePlot(lm, id.method = "identify") # six outliers are identified of which:
## Warning in plot.window(...): "id.method" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "id.method" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter
## Warning in box(...): "id.method" is not a graphical parameter
## Warning in title(...): "id.method" is not a graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "id.method" is not a
## graphical parameter
## StudRes Hat CookD
## 100 -2.7858779 0.12017185 0.07956506
## 194 2.8953873 0.04254017 0.02789440
## 268 2.8510645 0.02699267 0.01690305
## 279 0.5957952 0.34666809 0.01452318
## 280 -0.9925064 0.34977239 0.04076311
## 284 -1.9685634 0.20967290 0.07825718
# 273 is odd because it is a second-person narrative account but it was decided not to remove it because it is still a well-formed narrative text
# The others were fine.
NarrativeTxBdim <- NarrativeTxBdim[-268,] # 268 (POC_4e_PB_cleaned_Narrative_maxed_0002) was identified as to be removed because it is a rhymed version of Cindrella
InformativeTxBDim <- filter(TxBdimensions, Register == "Informative")
summary(InformativeTxBDim$Dim1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -23.5521 -10.1986 -5.5381 -5.2606 -0.8507 21.3275
summary(InformativeTxBDim$Dim2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -6.9917 -3.5551 -1.6605 -1.5110 0.1062 9.3885
boxplot(InformativeTxBDim$Dim2)
boxplot(InformativeTxBDim$Dim2 ~ InformativeTxBDim$Level) # We can see that the past tense is probably not taught until level B
boxplot(InformativeTxBDim$Dim2 ~ InformativeTxBDim$Series)
boxplot(InformativeTxBDim$Dim2 ~ InformativeTxBDim$Country)
options(contrasts=c("contr.treatment", "contr.poly")) # Standard option
options(contrasts=c("contr.sum", "contr.poly")) # Gries 2013: 5.2.1
lm <- lm(Dim1 ~ Series + Level, InformativeTxBDim)
summary(lm)
##
## Call:
## lm(formula = Dim1 ~ Series + Level, data = InformativeTxBDim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.7425 -3.9219 -0.4992 3.1995 30.9337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.6086 0.3990 -14.057 < 0.0000000000000002 ***
## Series1 -0.5151 1.0039 -0.513 0.60822
## Series2 3.6624 0.7846 4.668 0.0000043396892 ***
## Series3 5.9228 0.9010 6.573 0.0000000001787 ***
## Series4 3.5027 1.0721 3.267 0.00119 **
## Series5 -7.2635 1.0421 -6.970 0.0000000000159 ***
## Series6 -5.4580 0.9502 -5.744 0.0000000200912 ***
## Series7 2.4136 1.1356 2.125 0.03425 *
## Series8 -3.9570 1.6382 -2.415 0.01623 *
## Level1 1.8786 0.9300 2.020 0.04416 *
## Level2 1.4603 0.7283 2.005 0.04573 *
## Level3 1.0231 0.6333 1.615 0.10713
## Level4 -1.4437 0.6072 -2.378 0.01796 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.207 on 350 degrees of freedom
## Multiple R-squared: 0.3432, Adjusted R-squared: 0.3207
## F-statistic: 15.24 on 12 and 350 DF, p-value: < 0.00000000000000022
TukeyHSD(aov(lm), ordered = TRUE)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
## factor levels have been ordered
##
## Fit: aov(formula = lm)
##
## $Series
## diff lwr upr p adj
## JTT-HT 2.4126369 -2.1826794 7.007953 0.7827287
## POC-HT 4.5281635 -2.0304927 11.086820 0.4377118
## Access-HT 6.4473497 1.7083953 11.186304 0.0009244
## NGL-HT 8.9804284 3.9172494 14.043607 0.0000022
## Solutions-HT 10.1893773 6.1293673 14.249387 0.0000000
## GreenLine-HT 10.7380069 5.8140485 15.661965 0.0000000
## Achievers-HT 11.0074564 6.8014427 15.213470 0.0000000
## EIM-HT 13.3890380 8.9086228 17.869453 0.0000000
## POC-JTT 2.1155267 -4.2617491 8.492802 0.9821819
## Access-JTT 4.0347129 -0.4498566 8.519282 0.1166258
## NGL-JTT 6.5677915 1.7418765 11.393706 0.0009192
## Solutions-JTT 7.7767404 4.0167730 11.536708 0.0000000
## GreenLine-JTT 8.3253700 3.6457290 13.005011 0.0000020
## Achievers-JTT 8.5948195 4.6776489 12.511990 0.0000000
## EIM-JTT 10.9764011 6.7659624 15.186840 0.0000000
## Access-POC 1.9191862 -4.5623571 8.400729 0.9914950
## NGL-POC 4.4522648 -2.2699741 11.174504 0.4975122
## Solutions-POC 5.6612137 -0.3418184 11.664246 0.0821511
## GreenLine-POC 6.2098433 -0.4081685 12.827855 0.0854559
## Achievers-POC 6.4792929 0.3765668 12.582019 0.0279197
## EIM-POC 8.8608744 2.5658896 15.155859 0.0004986
## NGL-Access 2.5330786 -2.4298049 7.495962 0.8081843
## Solutions-Access 3.7420275 -0.1921957 7.676251 0.0767468
## GreenLine-Access 4.2906571 -0.5301102 9.111424 0.1256594
## Achievers-Access 4.5601067 0.4753811 8.644832 0.0160566
## EIM-Access 6.9416883 2.5749329 11.308444 0.0000382
## Solutions-NGL 1.2089489 -3.1103340 5.528232 0.9941766
## GreenLine-NGL 1.7575785 -3.3822551 6.897412 0.9784273
## Achievers-NGL 2.0270280 -2.4297729 6.483829 0.8897887
## EIM-NGL 4.4086096 -0.3080252 9.125244 0.0880629
## GreenLine-Solutions 0.5486296 -3.6065827 4.703842 0.9999770
## Achievers-Solutions 0.8180791 -2.4546834 4.090842 0.9973363
## EIM-Solutions 3.1996607 -0.4189776 6.818299 0.1313614
## Achievers-GreenLine 0.2694495 -4.0285337 4.567433 0.9999999
## EIM-GreenLine 2.6510311 -1.9158309 7.217893 0.6743085
## EIM-Achievers 2.3815816 -1.4001394 6.163303 0.5684244
##
## $Level
## diff lwr upr p adj
## D-E 1.1097074 -1.3993469 3.618762 0.7439926
## C-E 3.4127499 0.8245059 6.000994 0.0031498
## B-E 3.8653419 0.9879449 6.742739 0.0024593
## A-E 4.2130541 0.6884706 7.737638 0.0100774
## C-D 2.3030425 -0.1982833 4.804368 0.0875163
## B-D 2.7556345 -0.0438364 5.555105 0.0560855
## A-D 3.1033467 -0.3579122 6.564606 0.1026567
## B-C 0.4525920 -2.4180684 3.323252 0.9927083
## A-C 0.8003041 -2.7187819 4.319390 0.9712428
## A-B 0.3477122 -3.3891813 4.084606 0.9990635
par(mfrow = c(1,2))
car::crPlot(lm, var = "Series")
car::crPlot(lm, var = "Level") # Higher levels have lower scores on Dim1
par(mfrow = c(1,1))
car::influencePlot(lm, id.method = "identify")
## Warning in plot.window(...): "id.method" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "id.method" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "id.method" is not
## a graphical parameter
## Warning in box(...): "id.method" is not a graphical parameter
## Warning in title(...): "id.method" is not a graphical parameter
## Warning in plot.xy(xy.coords(x, y), type = type, ...): "id.method" is not a
## graphical parameter
## StudRes Hat CookD
## 218 5.2635436 0.03525890 0.0723665396
## 283 -0.3669127 0.10822991 0.0012599455
## 284 0.2753486 0.10822991 0.0007096842
## 286 3.1332706 0.04000724 0.0306985365
colours <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
colours2 <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
colours <- c(colours, colours2[c(2:4)]) # Nine colours range
#scales::show_col(colours)
# Plot all registers on one dimension
p2 <- ggplot(TxBdimensions,aes(x=Register,y=Dim1))+
geom_flat_violin(position = position_nudge(x = .2, y = 0),adjust =2)+
geom_point(position = position_jitter(width = .15), size = .25)+
ylab('Dimension 1 (Biber 1988)')+xlab('Textbook Registers')+theme_cowplot()+
ggtitle('Dimension 1')
p2
# Plot with coordinate flip
p3 <- ggplot(TxBdimensions,aes(x=Register,y=Dim1))+
geom_flat_violin(position = position_nudge(x = .2, y = 0),adjust = 2)+
geom_point(position = position_jitter(width = .15), size = .25)+
ylab('Dimension 1 (Biber 1988)')+xlab('Textbook Registers')+coord_flip()+theme_cowplot()+guides(fill = "none")+
ggtitle('Dimension 1')
p3
# Comparing textbook series
london <- suf_palette(name = "london", n = 5, type = "continuous") #
hanwell <- suf_palette(name = "hanwell", n = 5, type = "discrete") #
colours <- c(hanwell, london) # Better for a discrete palette
Fiction <- dimensions_ref %>% filter(Register=="Fiction")
p8 <- ggplot(Fiction,aes(x=Corpus,y=Dim2, fill = Corpus))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .45, aes(x=Corpus,y=Dim2, fill = Corpus, colour = Level))+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Corpus)+0.25, y = Dim2), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Score on Biber\'s (1988) Dimension 2')+ theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours[c(10,2)])+
ggtitle("Dimension 2: Narrative vs. Non-narrative Concerns")
p8
# Comparing textbook series without Level A
Fiction.B.E <- Fiction %>% filter(!Level=="A")
summary(Fiction.B.E$Level)
## A B C D E
## 0 55 53 69 72
## Info Teens Spoken BNC2014 Youth Fiction
## 0 0 1191
london <- suf_palette(name = "london", n = 5, type = "continuous") #
hanwell <- suf_palette(name = "hanwell", n = 5, type = "discrete") #
colours <- c(hanwell, london) # Better for a discrete palette
p8a <- ggplot(Fiction.B.E,aes(x=Corpus,y=Dim2, fill = Corpus))+
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .45, aes(x=Corpus,y=Dim2, fill = Corpus, colour = Level))+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Corpus)+0.25, y = Dim2), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Score on Biber\'s (1988) Dimension 2')+ theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours[c(10,2)])+
ggtitle("Dimension 2: Narrative vs. Non-narrative Concerns")
p8a
# Rainplots for all textbook registers and the three ref. corpora on Dimension 3
Dimensions[Dimensions$Dim3>20,] # Remove four Info Teens outliers with very high Dim 3 scores
## Corpus
## 3691 Informative.Teens
## 3960 Informative.Teens
## 4314 Informative.Teens
## 4578 Informative.Teens
## Filename
## 3691 Revision_World_GCSE_10529068_wjec-level-law-past-papers.txt
## 3960 Teen_Kids_News_10405570_how-to-become-a-conservation-scientist.txt
## 4314 Revision_World_GCSE_10526584_unit-10-investigating-ict-business.txt
## 4578 Revision_World_GCSE_10528474_wjec-level-history-past-papers.txt
## Level Dim1 Dim2 Dim3 Dim4 Dim5 Dim6
## 3691 Info Teens -18.9903 -7.3784 32.1621 -9.2659 -3.9201 -3.0246
## 3960 Info Teens -17.9705 -6.1316 24.4966 3.2431 -1.5149 -2.4668
## 4314 Info Teens -16.2157 -0.3315 23.1731 -3.7492 1.6543 -3.1060
## 4578 Info Teens -26.6036 -7.3784 27.1940 -9.2659 -3.9201 -3.0653
## TextType Register Series Country
## 3691 Learned exposition Info Teens Info Teens Info Teens
## 3960 Learned exposition Info Teens Info Teens Info Teens
## 4314 Learned exposition Info Teens Info Teens Info Teens
## 4578 Learned exposition Info Teens Info Teens Info Teens
Dimensions3 <- Dimensions[Dimensions$Dim3<20,]
colours <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
colours2 <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
colours <- c(colours, colours2[c(2:4)]) # Nine colours range
#scales::show_col(colours)
p3 <- ggplot(Dimensions3,aes(x=Register,y=Dim3, fill = Register, colour = Register))+ #Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
#note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim3), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 3 (Biber 1988)')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
annotate(geom = "text", x = 8.3, y = -15, label = "Reference Corpora", size = 5) +
annotate(geom = "segment", x = 7, xend = 9.5, y = -13, yend = -13) +
annotate(geom = "text", x = 3.8, y = -15, label = "Textbook Corpus", size = 5) +
annotate(geom = "segment", x = 1, xend = 6.5, y = -13, yend = -13) +
ggtitle("Dimension 3: Explicit vs. Situation-Dependent Reference ")
p3 + scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 20, by = 5))
#ggsave(here("plots", "Dim3.svg"), width = 13, height = 8)
london <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
#scales::show_col(london)
classic <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
#scales::show_col(classic)
colours <- c(london[c(6,1)], classic[4], london[2], classic[2], london[3])
#scales::show_col(colours)
dimensions_ref[dimensions_ref$Dim3>20,] # Remove four Info Teens outliers with very high Dim 3 scores
## Filename
## 2875 Revision_World_GCSE_10526584_unit-10-investigating-ict-business.txt
## 2920 Revision_World_GCSE_10528474_wjec-level-history-past-papers.txt
## 2939 Revision_World_GCSE_10529068_wjec-level-law-past-papers.txt
## 4706 Teen_Kids_News_10405570_how-to-become-a-conservation-scientist.txt
## Corpus.x Level Dim1 Dim2 Dim3 Dim4 Dim5
## 2875 Informative.Teens Info Teens -16.2157 -0.3315 23.1731 -3.7492 1.6543
## 2920 Informative.Teens Info Teens -26.6036 -7.3784 27.1940 -9.2659 -3.9201
## 2939 Informative.Teens Info Teens -18.9903 -7.3784 32.1621 -9.2659 -3.9201
## 4706 Informative.Teens Info Teens -17.9705 -6.1316 24.4966 3.2431 -1.5149
## Dim6 TextType Subcorpus Register Series
## 2875 -3.1060 Learned exposition Reference_Informative Informative Info Teens
## 2920 -3.0653 Learned exposition Reference_Informative Informative Info Teens
## 2939 -3.0246 Learned exposition Reference_Informative Informative Info Teens
## 4706 -2.4668 Learned exposition Reference_Informative Informative Info Teens
## Country Corpus.y Dim1nopunct Corpus Source predicted
## 2875 Info Teens <NA> -16.2157 Reference Revision -3.2931047
## 2920 Info Teens <NA> -26.6036 Reference Revision -3.2931047
## 2939 Info Teens <NA> -18.9903 Reference Revision -3.2931047
## 4706 Info Teens <NA> -17.9705 Reference Teen -0.8260256
Dimensions3 <- dimensions_ref[dimensions_ref$Dim3<20,]
ggplot(Dimensions3,aes(x=Subcorpus,y=Dim3, fill = Subcorpus, colour = Subcorpus))+ # Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
# note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Subcorpus)+0.25, y = Dim3), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 3 (Biber 1988)')+
theme_cowplot()+
theme(axis.title.x=element_blank())+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours3Reg)+
scale_fill_manual(values = colours3Reg) +
annotate(geom = "text", x = 1.5, y = -14, label = "Conversation", size = 5) +
annotate(geom = "segment", x = 0.7, xend = 2.5, y = -12, yend = -12) +
annotate(geom = "text", x = 3.5, y = -14, label = "Fiction", size = 5) +
annotate(geom = "segment", x = 2.7, xend = 4.5, y = -12, yend = -12) +
annotate(geom = "text", x = 5.7, y = -14, label = "Informative", size = 5) +
annotate(geom = "segment", x = 4.7, xend = 6.5, y = -12, yend = -12) +
scale_x_discrete(labels=rep(c("Reference", "Textbook"), 3))+
scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 20, by = 2))
#ggsave(here("plots", "Dim3_3RegComparison.svg"), width = 13, height = 8)
# Mixed effect model
# Check distribution of the outcome variable.
ggplot(dimensions_ref, aes(x = Dim3)) +
geom_histogram(bins = 20) +
facet_grid(rows = vars(Register), cols = vars(Corpus), scales = "free_y")
# Compute model with maximal random effect structure
md_maximal <- lmer(Dim3 ~ 1 + Corpus + Register + Corpus*Register + (Register|Source), dimensions_ref, REML = FALSE)
# Model failed to converge!
# Calculate variance-covariance matrix for the random effect estimates.
VarCorr(md_maximal)
md_max_ranefs <- tidy(md_maximal, effects = "ran_vals")
head(md_max_ranefs)
# To look at the association between intercepts and slopes, we need the values in the `term` column as separate columns.
md_max_ranefs %>%
pivot_wider(
id_cols = c(group, level),
names_from = term,
values_from = estimate
) ->
md_final_ranefs
head(md_final_ranefs)
# Now we can plot a matrix of correlations among the estimated random effects.
md_final_ranefs %>%
select(`(Intercept)`, starts_with("Register")) %>%
ggpairs(
lower = list(continuous = wrap("smooth_lm", shape = "circle filled", fill = "grey", se = FALSE)),
diag = "blank",
upper = list(continuous = wrap("cor", stars = FALSE))
)
fig_ranef_cor <- ggplot(md_final_ranefs,
aes(x = RegisterFiction, y = RegisterInformative, label = level)) +
geom_point(shape = "bullet") +
geom_text(hjust = "inward")
fig_ranef_cor
# Mixed effect model with simplified random effect structure, otherwise the model did not converge (see chunk above)
md0 <- lmer(Dim3 ~ 1 + (Register|Source), dimensions_ref, REML = FALSE)
md_corpus <- update(md0, .~. + Corpus)
md_register <- update(md0, . ~ . + Register)
md_both <- update(md_corpus, .~. + Register)
## boundary (singular) fit: see ?isSingular
md_interaction <- update(md_both, . ~ . + Corpus:Register)
## boundary (singular) fit: see ?isSingular
anova(md0, md_corpus, md_both, md_interaction)
## Data: dimensions_ref
## Models:
## md0: Dim3 ~ 1 + (Register | Source)
## md_corpus: Dim3 ~ (Register | Source) + Corpus
## md_both: Dim3 ~ (Register | Source) + Corpus + Register
## md_interaction: Dim3 ~ (Register | Source) + Corpus + Register + Corpus:Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 8 23239 23291 -11612 23223
## md_corpus 9 23241 23300 -11612 23223 0.2221 1 0.6375
## md_both 11 23188 23260 -11583 23166 57.2586 2 0.0000000000003685
## md_interaction 13 23191 23276 -11582 23165 1.0821 2 0.5821
##
## md0
## md_corpus
## md_both ***
## md_interaction
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(md0, md_register)
## Data: dimensions_ref
## Models:
## md0: Dim3 ~ 1 + (Register | Source)
## md_register: Dim3 ~ (Register | Source) + Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 8 23239 23291 -11612 23223
## md_register 10 23190 23255 -11585 23170 53.507 2 0.000000000002405 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
md_final3 <- lmer(Dim3 ~ 1 + Corpus + Register + Corpus:Register + (1|Source), dimensions_ref)
tab_model(md_final3)
Dim 3 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | 0.75 | 0.27 – 1.22 | 0.002 |
Corpus1 | 0.08 | -0.40 – 0.55 | 0.751 |
Register1 | -1.54 | -2.20 – -0.87 | <0.001 |
Register2 | -1.47 | -1.83 – -1.11 | <0.001 |
Corpus1 * Register1 | 0.31 | -0.35 – 0.98 | 0.358 |
Corpus1 * Register2 | 0.18 | -0.18 – 0.54 | 0.323 |
Random Effects | |||
σ2 | 5.65 | ||
τ00 Source | 0.99 | ||
ICC | 0.15 | ||
N Source | 325 | ||
Observations | 5033 | ||
Marginal R2 / Conditional R2 | 0.459 / 0.539 |
# Diagnostic plots (in new window)
residplot(md_final3) # Oh dear, oh dear...
# We can access the estimated deviation between each series average Dim3 and the overall average:
ranef(md_final3) %>% head()
## $Source
## (Intercept)
## Access -0.512929877373465737
## Achievers -0.844371056651336827
## BBC -0.254229409098271852
## Book1 -0.269611763742281130
## Book10 0.544690150441830001
## Book100 0.428512666342395376
## Book101 -0.548380120311670272
## Book102 0.231482072182613796
## Book103 0.041827009818413578
## Book104 -0.348263529584699805
## Book105 -0.390500535934290849
## Book106 1.134568107604746912
## Book107 -0.078033096851199801
## Book108 -0.999223645467507193
## Book109 0.379373314337525525
## Book11 0.146596593274473580
## Book110 -0.098452107470765757
## Book111 1.357366773100555202
## Book112 0.462530635168040050
## Book113 -0.434599426879418771
## Book114 -0.233083851041989670
## Book115 0.390616628497316765
## Book116 0.322734990674386935
## Book117 1.396908675781467934
## Book118 -0.262328811843715426
## Book119 -0.723736731914562448
## Book12 0.072429809109702606
## Book120 -0.116762353769419402
## Book121 -0.103482281875283508
## Book122 -0.014759880568605230
## Book123 -0.424631657967398990
## Book124 -0.212952866768694543
## Book125 0.638607312636609525
## Book126 -0.355608201414609360
## Book127 -0.266680067003451593
## Book128 -0.306067669856004865
## Book129 -0.700334591280047158
## Book13 1.274219738925264744
## Book130 -0.147015406783093716
## Book131 0.068922059678331288
## Book132 -0.812407699945120743
## Book133 0.410984205840762895
## Book134 -0.338244327396560240
## Book135 0.060054962875275446
## Book136 -0.100735744930485482
## Book137 -0.371603950287871188
## Book138 -0.625128854937655909
## Book139 0.046795464291587492
## Book14 0.922272117092604926
## Book140 0.104009840647268106
## Book141 0.061135061673791596
## Book142 -0.482103200703678625
## Book143 -0.180693915986347542
## Book144 -0.599443076843421019
## Book145 -0.144351163080087386
## Book146 0.124737450923552887
## Book147 -0.059259951067467918
## Book148 -0.045023220237503533
## Book149 0.399288278851117395
## Book15 1.381663852739554832
## Book150 -0.673321834661921192
## Book151 0.252940034979799999
## Book152 0.905329995938738419
## Book153 -0.435514939194351469
## Book154 -0.180570476123660034
## Book155 -0.240726835873393774
## Book156 -0.262627124845210502
## Book157 -0.068497367458586381
## Book158 -0.266422900622852898
## Book159 1.886594611062988314
## Book16 0.946569196731604778
## Book160 -0.121391348620202594
## Book161 -0.259685141451157175
## Book162 -0.386097847498434787
## Book163 -0.233330730767364602
## Book164 -0.116032001248517980
## Book165 -0.127460475202340523
## Book166 0.002789153243475054
## Book167 0.258258235730588759
## Book168 -0.421319354985283168
## Book169 0.004229284974829861
## Book17 2.240928736907606744
## Book170 -0.381221972922276220
## Book171 0.091696714344184693
## Book172 0.083374810267998894
## Book173 0.174998048347834584
## Book174 -0.261042979940720177
## Book175 0.421846913757267516
## Book176 0.069631838888784700
## Book177 -1.207734146857231350
## Book178 -0.104058334567825386
## Book179 -0.130803638150128521
## Book18 -0.273849865694553718
## Book180 0.178341211295622498
## Book181 0.011923703082353933
## Book182 -0.255992232225754568
## Book183 -0.625087708316759971
## Book184 -0.041474324185236340
## Book185 1.010284739188829661
## Book186 -0.377889096629712318
## Book187 0.055528834576731821
## Book188 0.042711662167674372
## Book189 0.251448469972325395
## Book19 -0.356935179938500380
## Book190 0.209602356521245176
## Book191 -0.902673099535393320
## Book192 -0.301551828212685280
## Book193 -0.068127047870523705
## Book194 0.253413221120102283
## Book195 -0.153526859539862059
## Book196 0.494933599123522472
## Book197 0.385535020816679175
## Book198 -0.011396144310369441
## Book199 -0.021651939568660274
## Book2 0.891288711558029245
## Book20 0.345890251583526986
## Book200 -0.726133522581745683
## Book201 0.872783018810120326
## Book202 -0.091241162158767861
## Book203 0.421733760549803938
## Book204 -0.420609575774829492
## Book205 0.187012861649423046
## Book206 -0.256959177816807049
## Book207 -0.148527545101016151
## Book208 -0.054075476834590651
## Book209 -0.391961240976093306
## Book21 0.209540636589901408
## Book210 0.762551221430135873
## Book211 0.446833199296272909
## Book212 -0.168895122444462253
## Book213 -0.337637414738346520
## Book214 -0.475848914327509365
## Book215 -0.090623962845330169
## Book216 -0.765233099088027835
## Book217 0.321850338325126106
## Book218 -0.206966033428348239
## Book219 -1.049833989169403736
## Book22 -0.705776231893523454
## Book220 -0.390150789656675989
## Book221 0.314073626975810316
## Book222 -0.656945479545372413
## Book223 -0.696127349293446440
## Book224 -0.294330596245463538
## Book225 -0.143353357523362923
## Book226 0.053286343737907985
## Book227 -0.168555662822071545
## Book228 0.005391677015137698
## Book229 -0.702762241912902375
## Book23 -0.496093051808267849
## Book230 -0.777124472526928955
## Book231 -0.111279566535047142
## Book232 -0.230172727613608186
## Book233 0.023167017242145205
## Book234 -0.429435525956989472
## Book235 -0.231777445828546369
## Book236 -0.190106205516273413
## Book237 0.126105576068339997
## Book238 -0.060494349694343377
## Book239 -0.051380646165033503
## Book24 -0.379246935119275541
## Book240 0.909465231338771440
## Book241 0.779719648998929649
## Book242 0.545327923065715758
## Book243 -0.308896500042594557
## Book244 -0.490425104779864340
## Book245 -1.157720429158324515
## Book246 -0.535768681007092074
## Book247 -0.450049983025810840
## Book248 -0.603640032174797780
## Book249 -0.114530149585819419
## Book25 -0.937904893677465878
## Book250 -0.704397820093512483
## Book251 -0.049374475397239624
## Book252 0.669086672065211108
## Book253 -0.053499424142048765
## Book254 0.132874195205707452
## Book255 -0.316518911563551164
## Book256 1.837928445198420579
## Book257 -0.654342955773710044
## Book258 -0.443322510509339351
## Book259 0.315133152463878463
## Book26 -0.195342113025270436
## Book260 -0.170283820899697319
## Book261 -0.326208940784523838
## Book262 0.630626934607492529
## Book263 0.502370850850447526
## Book264 -0.053180537830105921
## Book265 0.461676842784451036
## Book266 -0.333605045890553009
## Book267 0.073252370940800962
## Book268 0.602326279661693054
## Book269 -0.630261895894413282
## Book27 1.096137163688022387
## Book270 -0.432439229282386706
## Book271 -0.144474602942774810
## Book272 -0.080604760657190494
## Book273 0.043894627518430013
## Book274 0.188638153174809114
## Book275 -0.595719307652346486
## Book276 -0.048911575912161456
## Book277 -0.620026673946570406
## Book278 -0.838597524145329731
## Book279 0.661968306650228766
## Book28 -0.177895945765429636
## Book280 -0.652830817455787527
## Book281 0.009897232003233312
## Book282 -0.058642751754030158
## Book283 0.381389498761422252
## Book284 1.088720485271545302
## Book285 -0.254109774319769333
## Book286 -0.771837131741811788
## Book287 0.428204066685676454
## Book288 -0.000482003117745031
## Book289 -1.170815341258429010
## Book29 0.485006976832398573
## Book290 0.717032772064101209
## Book291 -0.152971380157768067
## Book292 -0.229915561233008992
## Book293 -0.737129957016161574
## Book294 -0.348489835999627129
## Book295 -0.144814062565165685
## Book296 0.660137282020363370
## Book297 1.227981223693552337
## Book298 -0.420877028810652698
## Book299 0.188926179521080123
## Book3 1.502676064794252087
## Book30 -0.497101144020216212
## Book300 -0.186547022808782270
## Book31 0.331375781062515529
## Book32 -0.563069463971489048
## Book33 -1.127477662799874381
## Book34 0.105717425414445815
## Book35 -0.181959174578894961
## Book36 -0.358725057947470005
## Book37 -0.374309340611773456
## Book38 -0.064351845403329430
## Book39 1.478605291570179503
## Book4 0.209921242833187999
## Book40 0.744395274959841813
## Book41 0.172138358195572994
## Book42 0.158364526850686943
## Book43 -0.187904861298345383
## Book44 -0.162023636754855177
## Book45 0.182363293488191913
## Book46 0.009989811900249087
## Book47 -0.232703244798702913
## Book48 0.918990674076160863
## Book49 -0.133827914785973445
## Book5 1.221942957077086112
## Book50 0.060919041914088305
## Book51 0.182291286901624189
## Book52 -0.440689126772004780
## Book53 -0.995880482519719612
## Book54 0.119552976690675716
## Book55 -0.130237872112810515
## Book56 -0.135494352932255480
## Book57 -0.133179855506863870
## Book58 0.246140555876760703
## Book59 -0.395294117268657264
## Book6 1.268603225172981075
## Book60 0.030799715418325518
## Book61 0.248033300437969811
## Book62 0.250327224552913452
## Book63 -1.000540337336174534
## Book64 0.016408684760001749
## Book65 0.333391965486412201
## Book66 -0.747797218483410964
## Book67 0.173917949549318551
## Book68 0.299332850039871756
## Book69 -0.432305502764475269
## Book7 1.096075443756678869
## Book70 -0.029696103953799079
## Book71 -0.391148595213400396
## Book72 0.650807285732229235
## Book73 -0.637946027346713573
## Book74 -0.353190837436977934
## Book75 -0.063086586810782011
## Book76 0.867382524817540079
## Book77 0.911450555796996187
## Book78 0.154219004795429965
## Book79 0.679116160908574629
## Book8 0.786858587724359904
## Book80 -0.140339367542741955
## Book81 0.211669974221261631
## Book82 -0.461612183497544848
## Book83 -0.491268610508229397
## Book84 -0.631835754143679429
## Book85 1.090366350107379256
## Book86 -0.041392030943444645
## Book87 -0.014194114531287286
## Book88 0.319268387863911485
## Book89 0.319587274175854363
## Book9 0.549977491226946835
## Book90 -0.006540843044659026
## Book91 -0.524679666675660128
## Book92 1.521315484060072665
## Book93 0.175090628244850305
## Book94 -0.982692990522599397
## Book95 -0.416001154234494297
## Book96 -0.161046404508578822
## Book97 0.786529414757192957
## Book98 -0.255436752843660464
## Book99 -0.184818864731156551
## Dogo -1.916247803659451021
## Ducksters -0.215161608057834186
## EIM -1.765756592381979351
## Encyclopedia 1.707249833406061290
## Factmonster 0.952040853348859906
## GreenLine -0.727711917576328693
## History 0.292077550984963352
## HT 1.739707903731532168
## JTT 1.316860861544931538
## NGL -0.017553948579113889
## POC 1.206735107461293532
## Quatr -3.064597873168775077
## Revision 3.588216470124832469
## Science 0.359863302474250302
## Science_Tech 1.713372533358479055
## Solutions -0.394980480175962823
## Spoken.BNC2014 -0.000000000005700134
## Teen -0.283416517460975848
## TeenVogue -0.659273488848748701
## TweenTribute 0.075701187157177219
## WhyFiles -1.322429145969230113
## World -0.973165884592979258
## Plot predicted vs. observed values
dimensions_ref[, "predicted"] <- predict(md_final3)
dimensions_ref %>%
ggplot(aes(x = Corpus, y = Dim3)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
geom_point(aes(y = predicted), shape = "circle filled", fill = "red", position = position_jitter(width = 0.2, height = 0)) +
facet_wrap(vars(Register))
## Compare means
comparisons <- emmeans(md_final3, "Corpus", by = "Register")
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
pairs(comparisons)
## Register = Conversation:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference 0.777 1.056 Inf 0.736 0.4618
##
## Register = Fiction:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference 0.517 0.376 Inf 1.377 0.1684
##
## Register = Informative:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -0.832 0.444 Inf -1.876 0.0606
##
## Degrees-of-freedom method: asymptotic
# This is a warning that the degrees of freedom have been calculated according to the naive 'asymptotic' method (i.e. are assumed to be infinite), because we have a very large number of observations and so a more complex estimation method like Kenward-Roger might take a lot of computation.
visreg(md_final3, xvar = "Corpus", by="Register", type = "conditional", line=list(col="darkred"), ylab = "Dimension 2 (Biber 1988)")
emmeans(md_final3, ~ Corpus*Register)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Corpus Register emmean SE df asymp.LCL asymp.UCL
## Textbook Conversation -0.403 0.3493 Inf -1.09 0.281
## Reference Conversation -1.180 0.9963 Inf -3.13 0.772
## Textbook Fiction -0.467 0.3647 Inf -1.18 0.248
## Reference Fiction -0.984 0.0898 Inf -1.16 -0.808
## Textbook Informative 3.341 0.3558 Inf 2.64 4.038
## Reference Informative 4.173 0.2650 Inf 3.65 4.692
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
# Means and SD
Dimensions %>% select(Register, Dim3) %>% group_by(Register) %>% summarise_if(is.numeric, c(mean = mean, sd = sd))
## # A tibble: 9 × 3
## Register mean sd
## <fct> <dbl> <dbl>
## 1 Conversation -0.445 2.37
## 2 Fiction -0.649 2.74
## 3 Informative 3.12 3.07
## 4 Instructional 3.52 2.82
## 5 Personal -0.829 2.96
## 6 Poetry 0.919 3.77
## 7 Info Teens 4.18 3.82
## 8 Spoken BNC2014 -1.18 1.29
## 9 Youth Fiction -0.985 1.62
# Rainplots for all textbook registers and the three ref. corpora on Dimension 3
colours <- suf_palette(name = "london", n = 6, type = "continuous") # Very nice, similar to OrRd palette
colours2 <- suf_palette(name = "classic", n = 5, type = "continuous") # Just green and purple
colours <- c(colours, colours2[c(2:4)]) # Nine colours range
#scales::show_col(colours)
p4 <- ggplot(Dimensions,aes(x=Register,y=Dim4, fill = Register, colour = Register))+ #Or leave out "colour = Register" to keep the dots in black
geom_flat_violin(position = position_nudge(x = .25, y = 0),adjust = 2, trim = FALSE)+
geom_point(position = position_jitter(width = .15), size = .25)+
#note that here we need to set the x-variable to a numeric variable and bump it to get the boxplots to line up with the rainclouds.
geom_boxplot(aes(x = as.numeric(Register)+0.25, y = Dim4), outlier.shape = NA, alpha = 0.3, width = .15, colour = "BLACK") +
ylab('Dimension 4 (Biber 1988)')+
theme_cowplot()+
guides(fill = "none", colour = "none") +
scale_colour_manual(values = colours)+
scale_fill_manual(values = colours)+
annotate(geom = "text", x = 8.3, y = -15, label = "Reference Corpora", size = 5) +
annotate(geom = "segment", x = 7, xend = 9.5, y = -13, yend = -13) +
annotate(geom = "text", x = 3.8, y = -15, label = "Textbook Corpus", size = 5) +
annotate(geom = "segment", x = 1, xend = 6.5, y = -13, yend = -13)
p4 + scale_y_continuous(sec.axis = dup_axis(name=NULL), breaks = seq(from = -10, to = 25, by = 5))
#ggsave(here("plots", "Dim4.svg"), width = 13, height = 8)
# Check distribution of the outcome variable.
ggplot(dimensions_ref, aes(x = Dim4)) +
geom_histogram(bins = 20) +
facet_grid(rows = vars(Register), cols = vars(Corpus), scales = "free_y")
md0 <- lmer(Dim4 ~ 1 + (1|Source), dimensions_ref, REML = FALSE) # Random effect had to be simplified otherwise the model did not converge
md_corpus <- update(md0, .~. + Corpus)
md_register <- update(md0, . ~ . + Register)
md_both <- update(md_corpus, .~. + Register)
md_interaction <- update(md_both, . ~ . + Corpus:Register)
anova(md0, md_corpus, md_both, md_interaction)
## Data: dimensions_ref
## Models:
## md0: Dim4 ~ 1 + (1 | Source)
## md_corpus: Dim4 ~ (1 | Source) + Corpus
## md_both: Dim4 ~ (1 | Source) + Corpus + Register
## md_interaction: Dim4 ~ (1 | Source) + Corpus + Register + Corpus:Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 3 24864 24884 -12429 24858
## md_corpus 4 24854 24880 -12423 24846 11.825 1 0.0005843 ***
## md_both 6 24826 24865 -12407 24814 32.533 2 0.00000008621 ***
## md_interaction 8 24806 24858 -12395 24790 24.134 2 0.00000574729 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(md0, md_register)
## Data: dimensions_ref
## Models:
## md0: Dim4 ~ 1 + (1 | Source)
## md_register: Dim4 ~ (1 | Source) + Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 3 24864 24884 -12429 24858
## md_register 5 24832 24865 -12411 24822 35.998 2 0.00000001525 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
md_final4 <- lmer(Dim4 ~ 1 + Corpus + Register + Corpus:Register + (1|Source), dimensions_ref)
tab_model(md_final4)
Dim 4 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -0.99 | -1.44 – -0.55 | <0.001 |
Corpus1 | -0.54 | -0.98 – -0.09 | 0.019 |
Register1 | 0.56 | -0.07 – 1.18 | 0.080 |
Register2 | 0.34 | -0.01 – 0.69 | 0.055 |
Corpus1 * Register1 | -0.35 | -0.97 – 0.28 | 0.275 |
Corpus1 * Register2 | -0.27 | -0.61 – 0.08 | 0.133 |
Random Effects | |||
σ2 | 7.80 | ||
τ00 Source | 0.86 | ||
ICC | 0.10 | ||
N Source | 325 | ||
Observations | 5033 | ||
Marginal R2 / Conditional R2 | 0.113 / 0.201 |
# Diagnostic plots (in new window)
residplot(md_final4) # Oh dear, oh dear...
## Plot predicted vs. observed values
dimensions_ref[, "predicted"] <- predict(md_final4)
dimensions_ref %>%
ggplot(aes(x = Corpus, y = Dim4)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
geom_point(aes(y = predicted), shape = "circle filled", fill = "red", position = position_jitter(width = 0.2, height = 0)) +
facet_wrap(vars(Register))
## Compare means
comparisons <- emmeans(md_final4, "Corpus", by = "Register")
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
pairs(comparisons)
## Register = Conversation:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -1.765 0.987 Inf -1.787 0.0739
##
## Register = Fiction:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -1.602 0.369 Inf -4.337 <.0001
##
## Register = Informative:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference 0.156 0.426 Inf 0.365 0.7149
##
## Degrees-of-freedom method: asymptotic
# This is a warning that the degrees of freedom have been calculated according to the naive 'asymptotic' method (i.e. are assumed to be infinite), because we have a very large number of observations and so a more complex estimation method like Kenward-Roger might take a lot of computation.
visreg(md_final4, xvar = "Corpus", by="Register", type = "conditional", line=list(col="darkred"), ylab = "Dimension 4 (Biber 1988)")
emmeans(md_final4, ~ Corpus*Register)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 5033' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 5033)' or larger];
## but be warned that this may result in large computation time and memory use.
## Corpus Register emmean SE df asymp.LCL asymp.UCL
## Textbook Conversation -1.317 0.3347 Inf -1.9730 -0.661
## Reference Conversation 0.448 0.9288 Inf -1.3727 2.268
## Textbook Fiction -1.453 0.3564 Inf -2.1519 -0.755
## Reference Fiction 0.149 0.0971 Inf -0.0416 0.339
## Textbook Informative -1.811 0.3440 Inf -2.4848 -1.137
## Reference Informative -1.966 0.2511 Inf -2.4585 -1.474
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
dimensions_refUpper <- dimensions_ref %>% filter(!(Level %in% c("A", "B"))) %>% droplevels()
summary(dimensions_refUpper$Level) # Check that the subsetting has worked
## C D E Info Teens Spoken BNC2014
## 262 285 233 1414 1251
## Youth Fiction
## 1191
md_final4Upper <- lmer(Dim4 ~ 1 + Corpus + Register + Corpus:Register + (1|Source), dimensions_refUpper)
tab_model(md_final4Upper, wrap.labels = 100)
Dim 4 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -0.49 | -0.97 – -0.01 | 0.043 |
Corpus1 | -0.04 | -0.52 – 0.44 | 0.873 |
Register1 | 0.85 | 0.18 – 1.52 | 0.013 |
Register2 | 0.28 | -0.09 – 0.65 | 0.142 |
Corpus1 * Register1 | -0.05 | -0.72 – 0.62 | 0.879 |
Corpus1 * Register2 | -0.32 | -0.70 – 0.05 | 0.088 |
Random Effects | |||
σ2 | 6.59 | ||
τ00 Source | 0.99 | ||
ICC | 0.13 | ||
N Source | 325 | ||
Observations | 4636 | ||
Marginal R2 / Conditional R2 | 0.125 / 0.239 |
residplot(md_final4Upper) # Oh dear, oh dear...
comparisons <- emmeans(md_final4Upper, "Corpus", by = "Register")
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
pairs(comparisons)
## Register = Conversation:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -0.183 1.063 Inf -0.172 0.8637
##
## Register = Fiction:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -0.728 0.397 Inf -1.835 0.0665
##
## Register = Informative:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference 0.675 0.456 Inf 1.482 0.1385
##
## Degrees-of-freedom method: asymptotic
visreg(md_final4Upper, xvar = "Corpus", by="Register", type = "conditional", line=list(col="darkred"), ylab = "Dimension 4 (Biber 1988)")
emmeans(md_final4Upper, ~ Corpus*Register)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
## Corpus Register emmean SE df asymp.LCL asymp.UCL
## Textbook Conversation 0.265 0.3657 Inf -0.4516 0.982
## Reference Conversation 0.448 0.9980 Inf -1.5084 2.404
## Textbook Fiction -0.579 0.3854 Inf -1.3345 0.176
## Reference Fiction 0.149 0.0941 Inf -0.0358 0.333
## Textbook Informative -1.288 0.3693 Inf -2.0117 -0.564
## Reference Informative -1.963 0.2667 Inf -2.4855 -1.440
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
# Mixed effect model
dimensions_refUpper <- dimensions_ref %>% filter(!(Level %in% c("A", "B"))) %>% droplevels()
# Check distribution of the outcome variable.
ggplot(dimensions_refUpper, aes(x = Dim5)) +
geom_histogram(bins = 20) +
facet_grid(rows = vars(Register), cols = vars(Corpus), scales = "free_y")
md0 <- lmer(Dim5 ~ 1 + (1|Source), dimensions_refUpper, REML = FALSE) # Random effect had to be simplified otherwise the model did not converge
md_corpus <- update(md0, .~. + Corpus)
md_register <- update(md0, . ~ . + Register)
md_both <- update(md_corpus, .~. + Register)
md_interaction <- update(md_both, . ~ . + Corpus:Register)
anova(md0, md_corpus, md_both, md_interaction)
## Data: dimensions_refUpper
## Models:
## md0: Dim5 ~ 1 + (1 | Source)
## md_corpus: Dim5 ~ (1 | Source) + Corpus
## md_both: Dim5 ~ (1 | Source) + Corpus + Register
## md_interaction: Dim5 ~ (1 | Source) + Corpus + Register + Corpus:Register
## npar AIC BIC logLik deviance Chisq Df
## md0 3 18469 18489 -9231.7 18463
## md_corpus 4 18471 18497 -9231.7 18463 0.0564 1
## md_both 6 18160 18199 -9074.2 18148 315.0133 2
## md_interaction 8 18149 18201 -9066.7 18133 15.0138 2
## Pr(>Chisq)
## md0
## md_corpus 0.8122418
## md_both < 0.00000000000000022 ***
## md_interaction 0.0005493 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(md0, md_register, md_both)
## Data: dimensions_refUpper
## Models:
## md0: Dim5 ~ 1 + (1 | Source)
## md_register: Dim5 ~ (1 | Source) + Register
## md_both: Dim5 ~ (1 | Source) + Corpus + Register
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## md0 3 18469 18489 -9231.7 18463
## md_register 5 18160 18192 -9075.1 18150 313.2896 2 <0.0000000000000002
## md_both 6 18160 18199 -9074.2 18148 1.7802 1 0.1821
##
## md0
## md_register ***
## md_both
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
md_final5 <- lmer(Dim5 ~ 1 + Corpus + Register + Corpus:Register + (1|Source), dimensions_refUpper, REML = FALSE)
tab_model(md_final5)
Dim 5 | |||
---|---|---|---|
Predictors | Estimates | CI | p |
(Intercept) | -0.74 | -1.06 – -0.42 | <0.001 |
Corpus1 | -0.16 | -0.49 – 0.16 | 0.327 |
Register1 | -1.08 | -1.53 – -0.63 | <0.001 |
Register2 | -0.47 | -0.72 – -0.22 | <0.001 |
Corpus1 * Register1 | 0.22 | -0.23 – 0.68 | 0.331 |
Corpus1 * Register2 | 0.13 | -0.12 – 0.38 | 0.313 |
Random Effects | |||
σ2 | 2.79 | ||
τ00 Source | 0.45 | ||
ICC | 0.14 | ||
N Source | 325 | ||
Observations | 4636 | ||
Marginal R2 / Conditional R2 | 0.359 / 0.448 |
# Diagnostic plots (in new window)
residplot(md_final5) # ??
## Plot predicted vs. observed values
dimensions_refUpper[, "predicted"] <- predict(md_final5)
dimensions_refUpper %>%
ggplot(aes(x = Corpus, y = Dim5)) +
geom_point(shape = "circle filled", fill = "grey", position = position_jitter(width = 0.2, height = 0)) +
geom_point(aes(y = predicted), shape = "circle filled", fill = "red", position = position_jitter(width = 0.2, height = 0)) +
facet_wrap(vars(Register))
## Compare means
comparisons <- emmeans(md_final5, "Corpus", by = "Register")
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
pairs(comparisons)
## Register = Conversation:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference 0.1252 0.718 Inf 0.174 0.8616
##
## Register = Fiction:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -0.0665 0.265 Inf -0.251 0.8022
##
## Register = Informative:
## contrast estimate SE df z.ratio p.value
## Textbook - Reference -1.0312 0.306 Inf -3.366 0.0008
##
## Degrees-of-freedom method: asymptotic
emmeans(md_final5, ~ Corpus*Register)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 4636' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 4636)' or larger];
## but be warned that this may result in large computation time and memory use.
## Corpus Register emmean SE df asymp.LCL asymp.UCL
## Textbook Conversation -1.760 0.2457 Inf -2.241 -1.278
## Reference Conversation -1.885 0.6747 Inf -3.207 -0.562
## Textbook Fiction -1.243 0.2581 Inf -1.748 -0.737
## Reference Fiction -1.176 0.0621 Inf -1.298 -1.054
## Textbook Informative 0.294 0.2479 Inf -0.192 0.780
## Reference Informative 1.325 0.1799 Inf 0.972 1.677
##
## Degrees-of-freedom method: asymptotic
## Confidence level used: 0.95
visreg(md_final5, xvar = "Corpus", by="Register", type = "conditional", line=list(col="darkred"), ylab = "Dimension 5 (Biber 1988)")
v <- visreg::visreg(md_final5, xvar = "Corpus", by="Source", type = "conditional", line=list(col="darkred"), ylab = "Dimension 5 (Biber 1988)")
v1 <- subset(v, Source %in% c("HT", "JTT", "NGL", "Access", "POC", "GreenLine", "Solutions", "EiM"))
plot(v1)
#packages.bib <- sapply(1:length(loadedNamespaces()), function(i) toBibtex(citation(loadedNamespaces()[i])))
knitr::write_bib(c(.packages(), "knitr"), "packages.bib")
## Warning in utils::citation(..., lib.loc = lib.loc): no date field in DESCRIPTION
## file of package 'suffrager'
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] merTools_0.5.2 arm_1.11-2 MASS_7.3-53.1 predictmeans_1.0.4
## [5] nlme_3.1-152 visreg_2.7.0 forcats_0.5.1 stringr_1.4.0
## [9] dplyr_1.0.7 purrr_0.3.4 readr_2.0.2 tidyr_1.1.4
## [13] tibble_3.1.6 tidyverse_1.3.0 suffrager_0.1.0 sjPlot_2.8.9
## [17] scales_1.1.1 lme4_1.1-27.1 Matrix_1.3-2 here_1.0.1
## [21] gridExtra_2.3 GGally_2.1.1 ggplot2_3.3.5 emmeans_1.5.4
## [25] cowplot_1.1.1 car_3.0-10 carData_3.0-4 broom.mixed_0.2.6
##
## loaded via a namespace (and not attached):
## [1] readxl_1.3.1 backports_1.4.1 Hmisc_4.5-0
## [4] blme_1.0-5 plyr_1.8.6 TMB_1.7.19
## [7] splines_4.0.3 TH.data_1.0-10 digest_0.6.29
## [10] foreach_1.5.1 htmltools_0.5.2 fansi_0.5.0
## [13] magrittr_2.0.1 checkmate_2.0.0 cluster_2.1.1
## [16] tzdb_0.1.2 openxlsx_4.2.3 modelr_0.1.8
## [19] sandwich_3.0-0 jpeg_0.1-8.1 colorspace_2.0-2
## [22] rvest_1.0.0 haven_2.3.1 xfun_0.29
## [25] crayon_1.4.2 jsonlite_1.7.2 survival_3.2-7
## [28] zoo_1.8-9 iterators_1.0.13 glue_1.6.0
## [31] gtable_0.3.0 sjstats_0.18.1 sjmisc_2.8.6
## [34] abind_1.4-5 mvtnorm_1.1-1 DBI_1.1.1
## [37] ggeffects_1.0.1 Rcpp_1.0.7 xtable_1.8-4
## [40] performance_0.7.2 htmlTable_2.1.0 foreign_0.8-81
## [43] Formula_1.2-4 datawizard_0.2.1 htmlwidgets_1.5.4
## [46] httr_1.4.2 RColorBrewer_1.1-2 ellipsis_0.3.2
## [49] pkgconfig_2.0.3 reshape_0.8.8 farver_2.1.0
## [52] nnet_7.3-15 sass_0.4.0 dbplyr_2.1.0
## [55] utf8_1.2.2 later_1.3.0 tidyselect_1.1.1
## [58] labeling_0.4.2 rlang_0.4.12 reshape2_1.4.4
## [61] effectsize_0.4.4-2 munsell_0.5.0 cellranger_1.1.0
## [64] tools_4.0.3 cli_3.1.0 generics_0.1.1
## [67] sjlabelled_1.1.7 broom_0.7.9 evaluate_0.14
## [70] fastmap_1.1.0 yaml_2.2.1 knitr_1.37
## [73] fs_1.5.2 zip_2.1.1 mime_0.12
## [76] xml2_1.3.3 compiler_4.0.3 pbkrtest_0.5.1
## [79] rstudioapi_0.13 curl_4.3.2 png_0.1-7
## [82] reprex_1.0.0 bslib_0.3.1 stringi_1.7.6
## [85] highr_0.9 parameters_0.13.0.1 lattice_0.20-41
## [88] nloptr_1.2.2.3 vctrs_0.3.8 pillar_1.6.4
## [91] lifecycle_1.0.1 jquerylib_0.1.4 estimability_1.3
## [94] data.table_1.14.2 insight_0.14.5 httpuv_1.6.4
## [97] R6_2.5.1 latticeExtra_0.6-29 promises_1.2.0.1
## [100] rio_0.5.26 codetools_0.2-18 boot_1.3-27
## [103] assertthat_0.2.1 rprojroot_2.0.2 withr_2.4.3
## [106] multcomp_1.4-16 mgcv_1.8-34 bayestestR_0.9.0
## [109] hms_1.0.0 grid_4.0.3 rpart_4.1-15
## [112] coda_0.19-4 minqa_1.2.4 rmarkdown_2.11
## [115] snakecase_0.11.0 numDeriv_2016.8-1.1 shiny_1.7.1
## [118] lubridate_1.7.10 base64enc_0.1-3